

Fahrdynamik, Betriebsfestigkeit und Reifentest

Komplette Messlösungen für Fahrzeugerprobungen auf der Teststrecke und am Prüfstand

Absolute Aufmerksamkeit für die Welt von morgen

Kistler entwickelt messtechnische Lösungen, bestehend aus Sensoren, Elektronik, Systemen und Services. Im physikalischen Grenzbereich von Emissionsreduktion, Qualitätskontrolle, Mobilität und Fahrzeugsicherheit erbringen wir Spitzenleistungen für eine zukunftsfähige Welt und schaffen ideale Voraussetzungen für Industrie 4.0. So ermöglichen wir Innovation und Wachstum – für und mit unseren Kunden.

Seit 25 Jahren setzen Kistler Radkraftsensoren Maßstäbe im Bereich der Betriebsfestigkeit. Die einzigartige Präzision und Qualität der Kistler Sensortechnologie für Fahrbetriebs- und Prüfstandsanwendungen wird von Kunden auf der ganzen Welt geschätzt.

Kistler liefert langlebige Präzisionsmesstechnik zur zuverlässigen Messung der Längs- und Querdynamik im mobilen Fahrversuch.

Die Anforderungen an Reifentests und die eingesetzten Messsysteme wachsen. Mehrkomponenten-Messnaben am Prüfstand oder RoaDyn Radkraftsensoren und Correvit-Sensoren auf der Teststrecke liefern exakte Testresultate.

Inhalt

Effiziente Fahrzeugtests aus einer Hand	4
RoaDyn S: Mehrkomponenten-Radkraftsensoren rotierend	6
RoaDyn P: 1-Komponenten-Drehmoment-Messräder	8
Beschleunigung: IEPE und kapazitive Beschleunigungssensoren	9
Berührungslose Sensoren für Fahrdynamikmessungen	10
Sonstige Sensoren für Fahrdynamikmessungen	12
RoaDyn S: Mehrkomponenten-Prüfstandsmessnaben	14
RoaDyn P/S: Mehrkomponenten-Messnaben	16
Datenübertragung bei Fahrdynamik-, Reifen- und Betriebsfestigkeitstests	18
Die neue DTI-Technologie	19
Service nach Maß für Ihren Erfolg	22

Kunden weltweit vertrauen bei Fahrzeugtests auf den Rundum-Support und die universell einsetzbaren Messlösungen von Kistler

Effiziente Fahrzeugtests aus einer Hand

Die Innovationszyklen in der Automobilindustrie werden immer kürzer. Als langjähriger Entwicklungspartner am Puls der Forschung ermöglicht Kistler eine effiziente, integrierte Fahrzeugerprobung am Prüfstand und auf der Teststrecke.

Keine Fahrzeugentwicklung ohne realitätsnahe Tests und die präzise Überprüfung aller Fahrzeugparameter. Mit umfassenden Messlösungen für Betriebsfestigkeit, Fahrdynamik und Reifenentwicklung unterstützt Kistler eine umfassende, integrierte Erprobung unterschiedlichster Fahrzeugmodelle.

Einblick in komplexe Zusammenhänge

Während Radkraftsensoren und Messnaben alle Kräfte und Momente am Rad messen, erfassen fahrdynamische Messsysteme die bei der Fahrt auftretende Kinematik, zum Beispiel die Schräglauf- und Sturzwinkel. Sensoren für Rad- und Karosseriebewegungen runden das Bild ab und ermöglichen dank hochauflösender Daten die Analyse komplexer Zusammenhänge.

Lösungen nach Maß

Messlösungen von Kistler decken die gesamte Messkette ab – von der Sensorik über die Signalaufbereitung mit allen gängigen Schnittstellen bis hin zur benutzerfreundlichen Software. Komplettiert wird das modulare Portfolio durch individuell gefertigte Komponenten wie Felgen und fahrzeugspezifische

Fahrzeugerprobungen mit Kistler:

- Experimentelle Simulation auf Prüfständen
- Spurwechseltests, ISO 3888-1, ISO 3888-2
- Stationäre Kreisfahrt, ISO 4138
- Lastwechsel aus stationärer Kreisfahrt, ISO 9816
- Bremsen aus stationärer Kreisfahrt, ISO 7975
- ABS- und ESP-Tests
- Rollwiderstandsmessungen basierend auf ISO 28580
- Kundenspezifische Applikationen


Adaptionen einschließlich der notwendigen Halterungen, um die Sensoren mit geringem Zeitaufwand passgenau am Testfahrzeug zu montieren.

Nachhaltig und kosteneffizient

Messlösungen von Kistler sind extrem langlebig, auch beim täglichen Einsatz auf der Teststrecke, und liefern über Jahre hinweg hochpräzise Messdaten. Unser Kalibrierservice stellt sicher, dass die hohen Qualitätsansprüche auch langfristig erfüllt werden. So sorgt beispielsweise der weltweit einzigartige Hexapoden-Kalibrierstand für Radkraftsensoren von Kistler über die komplette Lebensdauer hinweg für höchste Genauigkeit.

RoaDyn S530 Messnabe

Höchste Prozesssicherheit und effiziente Zeitnutzung

Die neue DTI (Digital Transducer Interface)-Technologie von Kistler bietet ein durchgängiges Bussystem für komplette Applikationen. Nur ein einziges Kabel ermöglicht die Konfiguration der Sensoren, die Übertragung und Synchronisation der Messdaten sowie die Stromversorgung. Das Testsetup ist mit einer automatischen Sensorerkennung so einfach wie noch nie. Einbauposition, Kalibrierwerte sowie relevante physikalische Größen werden automatisch mit dem KiCenter (Kistler Messsoftware) erkannt und können im Graphical User Interface (GUI) konfiguriert werden. Höchste Prozesssicherheit und effiziente Zeitnutzung sind garantiert.

Ein erfahrenes Team an Ihrer Seite

Unsere Spezialisten setzen sich mit viel Know-how, Erfahrung und persönlichem Engagement für das Erreichen Ihrer Ziele ein und erarbeiten gemeinsam mit Ihnen die passende Lösung für Ihre spezifische Messaufgabe. Mit einer kompetenten Beratung vor und nach dem Kauf sorgen wir dafür, dass Sie möglichst schnell messbereit sind – und es stets bleiben. Gerne beraten wir Sie persönlich zur Auswahl und Integration der am besten geeigneten Messmittel oder unterbreiten Ihnen eine maßgeschneiderte Lösung für Ihre spezifische Anwendung. Unsere Tech Center unterstützen Sie weltweit bei Kalibrierung, Prüfmittelüberwachung, Fehlerbeseitigung und Reparatur.

Fahrzeugentwicklung mit dem Marktführer

Die Messtechnologie von Kistler ermöglicht präzise Messungen von Betriebsfestigkeit und Fahrdynamik sowie zuverlässige Reifentests.

www.kistler.com/de/de/anwendungen/automotive-research-test/fahrdynamik-betriebsfestigkeit/

RoaDyn S: Mehrkomponenten-Radkraftsensoren rotierend

RoaDyn S625 sp CFK: Leichter 6-Komponenten-Radkraftsensor für Pkw

Technische Daten		Тур 9266А
Messbereich		
F_x / F_z	kN	- 20 20
F _y	kN	-15 15
M_x/M_z	kN∙m	-4 4
M_{y}	kN∙m	-4 4
Felgengrößen	Zoll	14 18
Datenblatt	Nr.	9266A_000-495

Beschreibung

Untersuchungen der Fahrdynamik, Reifenversuche und Erfassung von Daten für Belastungsspektren an leichten Pkw auf Teststrecken. Verfügbar mit Innen- oder Außenübertragung mit Nahfeldtelemetrie. Ausführung in CFK für Felgen 14 ... 18" oder in Alu für Felgen 12 ... 19".

RoaDyn S630 sp CFK: Leichter 6-Komponenten-Radkraftsensor für große Pkw und leichte SUVs

Technische Daten		Тур 9279А
Messbereich		
F_x / F_z	kN	- 30 30
F _y	kN	– 18 18
M_x/M_z	kN⋅m	<i>-</i> 5 5
M_{y}	kN⋅m	<i>-</i> 5 5
Felgengrößen	Zoll	17 22
Datenblatt	Nr.	9279A_000-692

Beschreibung

Untersuchungen der Fahrdynamik, Reifenversuche und Erfassung von Daten für Belastungsspektren an Pkw und leichten SUVs auf Teststrecken. Verfügbar mit Innen- oder Außenübertragung mit Nahfeldtelemetrie.

RoaDyn S635 sp Alu: 6-Komponenten-Radkraftsensor für große Pkw und leichte SUVs

Technische Daten		Тур 9267А
Messbereich		
F_x / F_z	kN	- 35 35
F_{y}	kN	-20 20
M_x/M_z	kN⋅m	<i>-</i> 5 5
$\overline{M_{y}}$	kN⋅m	<i>-</i> 5 5
Felgengrößen	Zoll	15 22
Datenblatt	Nr.	9267A_000-559

Beschreibung

Untersuchungen der Fahrdynamik, Reifenversuche und Erfassung von Daten für Belastungsspektren an schweren Pkw und leichten SUVs auf Teststrecken. Verfügbar mit Innen- oder Außenübertragung mit Nahfeldtelemetrie.

RoaDyn S650 sp CFK: 6-Komponenten-Radkraftsensor für SUVs und leichte Lkw

Technische Daten		Тур 9268А
Messbereich		
F_x / F_z	kN	<i>–</i> 50 50
$\overline{F_{y}}$	kN	-30 30
M_x / M_z	kN⋅m	-6 6
M_{y}	kN⋅m	- 6 6
Felgengrößen	Zoll	15 22
Datenblatt	Nr.	9268A_000-497

Beschreibung

Untersuchungen der Fahrdynamik, Reifenversuche und Erfassung von Daten für Belastungsspektren an leichten SUVs und Nutzfahrzeugen auf Teststrecken. Verfügbar mit Innen- oder Außenübertragung mit Nahfeldtelemetrie. Als Einzelrad (A1), Zwilling (A3) oder Super-Single (A4).

RoaDyn S: Mehrkomponenten-Radkraftsensoren rotierend

RoaDyn S660 sp: 6-Komponenten-Radkraftsensor für SUVs, leichte Lkw und Rennsport

Technische Daten		Тур 9248А
Messbereich		
F_x / F_z	kN	-60 60
F _y	kN	-36 36
M_x/M_z	kN∙m	-7,5 7,5
M _y	kN∙m	-8,5 8,5
Felgengrößen	Zoll	15 22
Datenblatt	Nr.	9248A1_000-970

Beschreibung

Untersuchungen der Fahrdynamik, Reifenversuche und Erfassung von Daten für Belastungsspektren an SUVs, leichten Nutzfahrzeugen und Rennwagen auf Teststrecken. Mit Innen- oder Außenübertragung mit Nahfeldtelemetrie. Einzelrad (A1), Zwilling (A3) oder Super-Single (A4).

RoaDyn S6ST sp: 6-Komponenten-Radkraftsensor für leichte Nutzfahrzeuge

Technische Daten		Тур 9282А
Messbereich		
F_x / F_z	kN	-80 80
$\overline{F_{y}}$	kN	-50 50
M_x/M_z	kN⋅m	-15 15
M_{y}	kN⋅m	-25 25
Felgengrößen	Zoll	16 24
Datenblatt	Nr.	9282A_000-696

Beschreibung

Untersuchungen der Fahrdynamik, Reifenversuche und Erfassung von Daten für Belastungsspektren an leichten Nutzfahrzeugen auf Teststrecken. Verfügbar mit Innen- oder Außenübertragung mit Nahfeldtelemetrie. Als Einzelrad (A1), Zwilling (A3) oder Super-Single (A4).

RoaDyn S6MT sp: 6-Komponenten-Radkraftsensor für mittelschwere Nutzfahrzeuge

Technische Daten		Тур 9270А
Messbereich		
F_x/F_z	kN	-120 120
$\overline{F_{y}}$	kN	-70 70
M_x/M_z	kN∙m	-18 18
M_{y}	kN⋅m	-30 30
Felgengrößen	Zoll	17,5 24
Datenblatt	Nr.	9270A_000-858

Beschreibung

Untersuchungen der Fahrdynamik, Reifenversuche und Erfassung von Daten für Belastungsspektren an mittelschweren Nutzfahrzeugen auf Teststrecken. Verfügbar mit Innen- oder Außenübertragung mit Nahfeldtelemetrie. Als Einzelrad (A1), Zwilling (A3) oder Super-Single (A4).

RoaDyn S6XT sp: 6-Komponenten-Radkraftsensor für schwere Nutzfahrzeuge und Spezialnutzfahrzeuge

Technische Daten		Тур 9262А
Messbereich		
F_x / F_z	kN	-250 250
F _y	kN	-100 100
M_x/M_z	kN∙m	<i>-</i> 50 50
M_{y}	kN∙m	-80 80
Felgengrößen	Zoll	≥19,5
Datenblatt	Nr.	9262A_000-862

Beschreibung

Untersuchungen der Fahrdynamik, Reifenversuche und Erfassung von Daten für Belastungsspektren an Nutz-, Agrar- und Geleändefahrzeugen auf Teststrecken. Verfügbar mit Innen- oder Außenübertragung mit Nahfeldtelemetrie. Als Einzelrad (A1), Zwilling (A3) oder Super-Single (A4).

RoaDyn P: 1-Komponenten-Drehmoment-Messräder

RoaDyn P106 / P109: Drehmoment-Messräder für Pkw, SUVs, leichte Lkw ...

Technische Daten		Тур 9294В11	Тур 9294В13
Messbereich (umschaltbar)			
Oberer Messbereich My	kN⋅m	-6 6	- 9 9
Unterer Messbereich M _y	kN⋅m	-0,6 0,6	-0,9 0,9
Max. Last Kräfte F _z	kN	-24 24	-60 60
Max. Last Drehmoment M _x / M _z	kN⋅m	-6 6	-7,5 7,5
Felgengrößen	Zoll	14 22	14 22
Datenblatt	Nr.	9294B_000-634	9294B_000-634

Beschreibung

Messen von Drehmoment und Bremskraft an Pkw und SUVs, leichten Lkw und Hochleistungsfahrzeugen in den Bereichen Fahrstabilität, Traktionskontrolle, Anti-Blockier-System, Kraftverteilung, Ausrollmoment. Kundenspezifische Messbereiche auf Anfrage.

RoaDyn P1ST / P1MT: Drehmoment-Messräder für Nutzfahrzeuge

Technische Daten		Typ 9299A1	Typ 9299A2
Messbereich (umschaltbar)			
Oberer Messbereich M _y	kN∙m	–20 20	-30 30
Unterer Messbereich M _y	kN⋅m	-2 2	-3 3
Max. Last Kräfte F _z	kN	-80 80	-90 90
Max. Last Drehmoment M _x / M _z	kN⋅m	-10 10	– 15 15
Felgengrößen	Zoll	≥16	≥17,5
Datenblatt	Nr.	9299A_000-993	9299A_000-993

Beschreibung

Messen von Drehmoment und Bremskraft an Nutzfahrzeugen in den Bereichen Fahrstabilität, Traktionskontrolle, Anti-Blockier-System, Kraftverteilung, Ausrollmoment. Kundenspezifische Messbereiche auf Anfrage.

RoaDyn P1HT: Drehmoment-Messrad für Nutzfahrzeuge

Technische Daten		Тур 9299А3
Messbereich (umschaltbar)		
Oberer Messbereich M _y	kN∙m	<i>–</i> 50 50
Unterer Messbereich M _y	kN∙m	<i>–</i> 5 5
Max. Last Kräfte F _z	kN	-120 120
Max. Last Drehmoment M _x / M _z	kN⋅m	-25 25
Felgengrößen	Zoll	≥19,5
Datenblatt	Nr.	9299A_000-993

Beschreibung

Messen von Drehmoment und Bremskraft an Nutzfahrzeugen in den Bereichen Fahrstabilität, Traktionskontrolle, Anti-Blockier-System, Kraftverteilung, Ausrollmoment. Kundenspezifische Messbereiche auf Anfrage. Umrüstung auf S6XT durch Austausch der Messzellen möglich.

Beschleunigung: IEPE und kapazitive Beschleunigungssensoren

50 ... 2 000 g Ceramic Shear Miniatur Beschleunigungssensor (3-achsig) – für Dauerfestigkeitstests

Technische Daten		Тур 8763В050	Тур 8763В100
Bereich	g	±50	±100
Empfindlichkeit bei 100 Hz	mV/g	100	50
Frequenzbereich ±5 %	Hz	0,5 7 000	0,5 7 000
Seitenempfindlichkeit, max. 5 %	%	2,5	2,5
TempKoeffizient Empfindlichkeit	%/°C	0,01 (0,18 max.)	0,01 (0,18 max.)
Gewicht	Gramm	4,5 / 5,0 *	4,5 / 5 *
Datenblatt	Nr.	8763B_000-928	8763B_000-928

Beschreibung

Triaxialer Beschleunigungssensor für Fahrzeugtests, z. B. dynamische Vibrationsmessungen, NVH- und Betriebsfestigkeitsuntersuchungen. Weitere Messbereiche verfügbar (siehe Datenblatt).

50 ... 100 g Ceramic Shear Miniatur Beschleunigungssensor (3-achsig) - für Dauerfestigkeitstests

Technische Daten		Тур 8764В050	8764B100
Bereich	g	±50	±100
Empfindlichkeit bei 100 Hz	mV/g	100	50
Frequenzbereich ±5 %	Hz	0,5 10 000	0,5 10 000
Seitenempfindlichkeit	%	2,5	2,5
TempKoeffizient Empfindlichkeit	%/°C	0,01 (0,07 max.)	0,01 (0,07 max.)
Gewicht (ca.)	Gramm	6 / 6,2 *	6 / 6,2 *
Datenblatt	Nr.	8764B_003-201	8764B_003-201

Beschreibung

Triaxialer Beschleunigungssensor für Fahrzeugtests, z. B. dynamische Vibrationsmessungen, NVH- und Betriebsfestigkeitsuntersuchungen. Weitere Messbereiche verfügbar (siehe Datenblatt). * Abhängig vom Steckertyp

2 ... 200 g K-Beam, variable Kapazitätsbeschleunigungssensoren (1-achsig) – für Längsdynamikuntersuchungen

Technische Daten		Typ 8316A010	Тур 8316А030
Bereich	g	±10	±30
Empfindlichkeit ±5 % (max.)	mV/g	800	266,6
Frequenzbereich ±5 %	Hz	0 1 000	0 1 500
Seitenempfindlichkeit	%	1,0 (3,0 max.)	1,0 (3,0 max.)
TempKoeffizient Empfindlichkeit	%/°C	0,01 (0,030 max.)	0,01 (0,030 max.)
Gewicht	Gramm	15 / 12 *	5 / 12 *
Datenblatt	Nr.	8316A_003-324	8316A_003-324

Beschreibung

Hochpräziser, rauscharmer einachsiger Beschleunigungssensor für fahrdynamische Applikationen. Weitere Messbereiche verfügbar (siehe Datenblatt).

2 ... 200 g K-Beam triax, variable Kapazitätsbeschleunigungssensoren (3-achsig) – für Längs- und Querdynamikuntersuchungen

Technische Daten		Typ 8396A010	Typ 8396A030
Bereich	g	±10	±30
Empfindlichkeit ±5 % (max.)	mV/g	800	266,6
Frequenzbereich ±5 %	Hz	0 1 000	0 1 500
Seitenempfindlichkeit	%	1,0 (3,0 max.)	1,0 (3,0 max.)
TempKoeffizient Empfindlichkeit	%/°C	0,01 (0,030 max.)	0,01 (0,030 max.)
Gewicht (ohne Kabel)	Gramm	30 / 33 *	30 / 33 *
Datenblatt	Nr.	8396A_003-325	8396A_003-325

Beschreibung

Hochpräziser, rauscharmer dreiachsiger Beschleunigungssensor für fahrdynamische Applikationen. Weitere Messbereiche verfügbar (siehe Datenblatt).

^{*} Abhängig vom Steckertyp

^{*} Abhängig vom Gehäuse

^{*} Abhängig vom Ausgangstyp

Berührungslose Sensoren für Fahrdynamikmessungen

Correvit L-Motion: 1-achsige optische Sensoren zur Messung der Längsdynamik

Technische Daten		Typ 5335A (Stand.)	Typ 5337A (Small)
Geschwindigkeitsbereich	km/h	0,1 250 (400) *	0,1 250 (400)*
Wegauflösung	mm	1,0	1,0
Messgenauigkeit	%FSO	<±0,1	<±0,1
Messfrequenz	Hz	500	500
Arbeitsabstand und -bereich	mm	350 ±100	350 ±100
Gewicht Elektronik	Gramm	1 100	890
Datenblatt	Nr.	5335A_003-279d	5335A_003-279d

Beschreibung

Hochgenaue schlupffreie Messung von Weg, Längsgeschwindigkeit und Beschleunigung im dynamischen Fahrzeugtest, z. B. DIN 70028 Messung des Bremsweges bei ABS-Bremsungen geradeaus, ISO 14512 Bremsen bei Geradeausfahrt auf einseitig glatter Fahrbahn.

Correvit SFII: 2-achsige optische Sensoren zur Messung der Längs- und Querdynamik

Technische Daten		Typ CSF2A
Geschwindigkeitsbereich	km/h	0,3 250 (400) *
Messgenauigkeit	%FSO	≤±0,5
Winkelbereich / Winkelauflösung	0	±40 / <±0,1
Messfrequenz	Hz	250
Arbeitsabstand und -bereich	mm	180 ±50
Schnittstellen		CAN, RS-232C
Datenblatt	Nr.	CSF2A_000-812

Beschreibung

Hochgenaue schlupffreie Messung von Weg, Geschwindigkeit (Längsund Quergeschwindigkeit) und Winkel im dynamischen Fahrzeugtest. Mit und ohne Schutzglas sowie als optionale Rennversion, kalibriert auf bis zu 400 km/h, verfügbar.

Correvit S-Motion DTI: 2-achsige optische Sensoren zur Messung der Längs- und Querdynamik

Technische Daten		Typ 2055A (Stand.)	Typ 2053A (Small)
Geschwindigkeitsbereich	km/h	±0,1 250 (400) *	±0,1 250 (400) *
Messgenauigkeit	%FSO	≤±0,2	≤±0,2
Winkelbereich / Winkelauflösung	0	±30 / <±0,01	±30 / <±0,01
Messfrequenz	Hz	500	500
Arbeitsabstand und -bereich	mm	350 ±100	350 ±100
Schnittstellen		CAN, USB, Ethernet	CAN, USB, Ethernet
Datenblatt	Nr.	2053A_003-351	2053A_003-351

Beschreibung

Hochgenaue schlupffreie Messung von Weg, Geschwindigkeit (Absolut-, Längs-, Quergeschwindigkeit) und Winkel im dynamischen Fahrzeugtest, z. B. stationäre Kreisfahrt (ISO 4138).

Correvit S-350: 2-achsige optische Sensoren zur Messung der Längs- und Querdynamik

Technische Daten		Typ CS350A	Typ CM350A
Geschwindigkeitsbereich	km/h	0,5 250 (400) *	0,5 400
Messgenauigkeit	%FSO	≤±0,2	≤±0,2
Winkelbereich / Winkelauflösung	0	±40 / <±0,1	±40 / <±0,1
Messfrequenz	Hz	250	250
Arbeitsabstand und -bereich	mm	350 ±100	350 ±50
Schnittstellen		CAN, USB, RS-232C	CAN, RS-232C
Datenblatt	Nr.	CS350A 000-807	CM350A 003-148

Beschreibung

Hochgenaue schlupffreie Messung von Weg, Geschwindigkeit (Längsund Quergeschwindigkeit) und Winkel im dynamischen Fahrzeugtest, z. B. stationäre Kreisfahrt (ISO 4138).

^{*} Standard 250 km/h / optionale Kalibrierung auf bis zu 400 km/h erhältich

Berührungslose Sensoren für Fahrdynamikmessungen

Correvit S-175 Racing: 2-achsiger optische Sensoren zur Messung der Längs- und Querdynamik

Technische Daten		Typ 18030779
Geschwindigkeitsbereich	km/h	0,5 400
Messgenauigkeit (Winkel)	%FSO (°)	≤±0,2
Winkelbereich * / Winkelauflösung	0	±30 / <±0,1
Messfrequenz	Hz	250
Arbeitsabstand und -bereich	mm	175 ±25
Schnittstellen		CAN, RS-232C
Datenblatt	Nr.	18030779_003-246

Beschreibung

Hochgenaue schlupffreie Messung von Weg, Längs-/Quergeschwindigkeit und Winkel bei hohen Geschwindigkeiten, z. B. unter Rennbedingungen..

Correvit S-HR: 2-achsige optische Sensoren zur Messung der Längs- und Querdynamik

Technische Daten		Typ CSHRA
Geschwindigkeitsbereich	km/h	0,5 250
Messgenauigkeit (Winkel)	%FSO (°)	≤±0,2 (<±0,1)
Winkelbereich * / Winkelauflösung	٥	±40 / <±0,01
Messfrequenz	Hz	250
Arbeitsabstand und -bereich	mm	250 ±50
Schnittstellen		CAN, USB, RS-232C
Datenblatt	Nr.	CSHRA_000-806

Beschreibung

Hochgenaue schlupffreie Messung von Weg, Längs-/Quergeschwindigkeit und Winkel (hochauflösend) im dynamischen Fahrzeugtest, z. B. ISO 4138 stationäre Kreisfahrt, ISO 7401 Lenkwinkelsprung, Reifenuntersuchungen.

* High-resolution ±15°

Kistler GPS Sensoren: Zur Messung von Geschwindigkeit, Position und Wegstrecke mittels GPS

Technische Daten			Typ CGPSSA
Geschwindigkeitsb	ereich	km/h	0,1 1 600
Messgenauigkeit		km/h	0,1
Messfrequenz		%	100, 20, 10
Signalausgänge:	analog	V	0 10
	digital	Pulse/m	1 1 000 TTL
Schnittstellen			CAN, USB
Datenblatt		Nr.	CGPSSA_003-080

Beschreibung

Hochgenaue schlupffreie Messung von Weg, Längsgeschwindigkeit und Beschleunigung im dynamischen Fahrzeugtest, z. B. DIN 70028 Messung des Bremsweges bei ABS-Bremsungen geradeaus, ISO 14512 Bremsen bei Geradeausfahrt auf einseitig glatter Fahrbahn.

Microstar II: Mikrowellensensoren zur Messung der Längsdynamik

Technische Daten		Typ CMSTRA
Geschwindigkeitsbereich	km/h	0,5 400
Wegauflösung	mm	9,5
Messgenauigkeit	%FSO	<±0,5
Messfrequenz	Hz	250
Arbeitsabstand und -bereich	mm	300 1 200
Schnittstellen		CAN, USB, RS-232C
Datenblatt	Nr.	CMSTRA_000-894

Beschreibung

Microstar II Sensoren wurden für längsdynamische Fahrzeugtests, die einen großen Arbeitsabstand erfordern, entwickelt und sind bestens für Messungen auch abseits befestigter Wege geeignet. Für Tests mit Schienenfahrzeugen ist der Microstar II ebenfalls geeignet.

Sonstige Sensoren für Fahrdynamikmessungen

HF Sensoren: Optische Laser-Höhensensoren zur Abstandsmessung

Beschreibung

Höhensensoren zur Bestimmung von z. B. Nick- und Wankwinkel. Weitere Anwendungsgebiete sind z. B. Auftriebsmessung, Federwege, dynamische Reifenabplattung. Mit dem DCA-System, bestehend aus zwei HF Sensoren, kann auch der dynamische Sturzwinkel gemessen werden.

DCA System: Optisches Sensorsystem zur Messung des Sturzwinkels

Technische Daten		Тур КСD1590
Sensor relativ zum Radmittlpunkt	mm	62 195
Max. Raddurchmesser	mm	≤800
Max. Messbereich Sturzwinkel	0	±25
Genauigkeit Sturzwinkel	0	<0,5
Auflösung Sturzwinkel	0	0,04
Schnittstellen		CAN, USB, RS-232C
Datenblatt	Nr.	KCD15905_000-884

Beschreibung

Dynamische Sturzwinkelmessung relativ zur Fahrbahnoberfläche; zur Ermittlung der Kennlinie für Sturz als Funktion der Querbeschleunigung, für den Fahrwerkaufbau, zur Bestimmung von Reifenkenndaten. Zusätzliche Messung des Schwimmwinkels mit Correvit SFII Sensor (optional).

Kistler MSW DTI: Messlenkrad zur berührungslosen Messung von Lenkmoment, Lenkwinkel und Lenkgeschwindigkeit

Technische Daten		Typ 5612A1	Typ 5612A2	
Lenkmoment	:: Messbereich	N·m	±50	±250
	Genauigkeit	%FSO	±0,15	±0,15
	Linearitätsabweichung	%FSO	±0,15	±0,15
Lenkwinkel:	Messbereich	۰	≥±1 250	≥±1 250
	Lenkgeschwindigkeit	°/s	≤2 000	≤2 000
	Auflösung / Genauigk.	٥	±0,015 / ±0,1	±0,015 / ±0,1
Datenblatt		Nr.	5612A_003-350	5612A_003-350

Beschreibung

Messlenkrad zum Erfassen von Lenkmoment, Lenkwinkel und Lenkgeschwindigkeit, mit Update-Rate von 1 000 Hz. Für Pkw und Nutzfahrzeuge. Keine Beeinträchtigung von Lenkradfunktionen (z. B. Airbag) oder Bedienelementen. Schnittstellen: CAN, USB, Ethernet.

RV-4: Radvektorsensor für die gleichzeitige Messung der Radposisiton und Radlage in 5 Achsen

Technische Daten			Typ CRV4A
Messbereich: X-, Y-Achse / Z-Achse		mm	±150 / ±200
	Sturz	0	±10
	Radlenkwinkel	٥	±45
Genauigkeit:	X-, Z-Achse / Y-Achse	mm	±1 / ±0,7
	Sturz	٥	±0,2
	Radlenkwinkel	٥	±0,1
Datenblatt		Nr.	CRV4A_000-816

Beschreibung

Für die gleichzeitige Messung der Radposition und Radlage in 5 Achsen. Für verschiedene Messaufgaben wie z. B. Gewichtsverlagerung und Federweg beim Bremsen, Sturzwinkeländerung bei Kurvenfahrten, dynamisches Eigenlenkverhalten, Reifenbeanspruchung, etc.

Sonstige Sensoren für Fahrdynamikmessungen

WPT: Radimpulsgeber zur Bestimmung von Raddrehung, Weg und Geschwindigkeit

Technische Daten			Typ CWPTA
Zulässige Drehzahl	Maximum	min ⁻¹	6 000
	Dauerbetrieb	min ⁻¹	3 000
Lieferbare Impulszahlen Pulse/U			10 5 000
Schutzart			IP67
Impulsfrequenz		kHz	300
Spannungsversorgung, U _B		VDC	5 30
Datenblatt		Nr.	CWPTA_000-811

Beschreibung

Erfassung der Raddrehung an Kraftfahrzeugen, z. B. Radschlupfmessung, Beschleunigungs- und Bremstests, Tests von ABS-Systemen, Messung der Differenz von Reifengeschwindigkeit bei Verwendung mehrerer Radimpulsgeber.

PFT: Pedalkraftsensoren

Technische Daten		Typ CPFTA	Тур СРFTВ
Messbereich	N	0 1 500 / 0 250	0 1 500
Linearität	%FSO	±0,7	±0,5
Ausgabebereich	V	0 1,5	0 5
Spannungsversorgung	V	12	11 25
Betriebstemperaturbereich	°C	0 60	-10 50
Abmessungen Sensor	mm	65x52x32	50x70x27
Datenblatt	Nr.	CPFTA_000-818	CPFTB_000-978

Beschreibung

Messung der Kräfte, die während des Bremstests vom Fahrer auf das Bremspedal ausgeübt werden.

CDFL1x-5bar/CDFL3x-5bar: Kraftstoffdurchfluss-Messgeräte für Anwendung im mobilen Fahrzeugtest

Technische Daten		Typ CDFL1A	Typ CDFL3A
Messbereich	l/h	0,5 250	0,5 250
Messgenauigkeit	%FSO	±0,5	±0,5
Reproduzierbarkeit	%	±0,2	±0,2
Betriebsdruck max.	bar	5	5
Druckverlust	bar	0 0,5	0 0,5
Schnittstellen		CAN, USB, RS-232C	CAN, USB, RS-232C
Datenblatt	Nr.	CDFLA_000-814	CDFLA_000-814

Beschreibung

CDFL1A... für Messung des Kraftstoffverbrauchs von Fahrzeugen ohne Kraftstoffrückfluss.

CDFL3A... für Fahrzeuge mit Kraftstoffrückfluss.

SAG, DAG, TAG: Kreiselmodule für die dynamische Drehratenmessung

Technische Daten		Typ KCD16008	Typ KCD16922
Empfindlichkeit nominal	°/s	±150 (12,5 mV/°/s)	±150 (12,5 mV/°/s)
Ruhepegel / Signalhub nominal	VDC	±2,5 / ±2,0	±2,5 / ±2,0
Versorgungsspannung	VDC	8 42	8 42
Schock (Betrieb)	g	1 000	1 000
Abmessungen (LxBxH)	mm	51x34x19	76x38x30
Gewicht	Gramm	45	100
Datenblatt	Nr.	KCD16008_000-917	KCD16008_000-917

Beschreibung

Kreiselmodule für die dynamische Gier- und Rollratenmessung, Schwimmwinkelkorrektur, Lage und Bewegungserfassung. KCD16008 = 1-achsig, KCD16922 = 3-achsig; 2-achsig auf Anfrage.

RoaDyn S: Mehrkomponenten-Prüfstandsmessnaben (Betriebsfestigkeit)

RoaDyn S625 nsp: 6-Komponenten-Prüfstandsmessnabe für leichte und mittlere Pkw

Technische Dat	en		Typ 9266A2
Messbereich	F _x	kN	-20 20
	F _y	kN	-15 15
	F _z	kN	-20 20
	M _x	kN⋅m	-4 4
	M_{y}	kN⋅m	-4 4
	M _z	kN⋅m	-4 4
Datenblatt		Nr.	9266A_000-580

Beschreibung

Lastüberwachung und Bestimmung von Übertragungsfunktionen von Prüfständen für Betriebsfestigkeitstests von Pkw.

RoaDyn S635 nsp: 6-Komponenten-Prüfstandsmessnabe für große Pkw und leichte SUVs

Technische Dat	en		Typ 9267A2
Messbereich	F _x	kN	-35 35
	F _y	kN	-20 20
	F _z	kN	-35 35
	M_{x}	kN⋅m	- 5 5
	M_{y}	kN⋅m	- 5 5
	M_z	kN⋅m	- 5 5
Datenblatt		Nr.	9267A_000-581

Beschreibung

Lastüberwachung und Bestimmung von Übertragungsfunktionen von Prüfständen für Betriebsfestigkeitstests von schweren Pkw und leichten SUVs.

RoaDyn S650 nsp: 6-Komponenten-Prüfstandsmessnabe für SUVs und leichte Lkw

Technische Dat	ten		Тур 9268А2
Messbereich	F _x	kN	-50 50
	F _y	kN	-30 30
	F _z	kN	-50 50
	M _x	kN∙m	-6 6
	M_{y}	kN∙m	-6 6
	M_z	kN⋅m	-6 6
Datenblatt		Nr.	9268A_000-582

Beschreibung

Lastüberwachung und Bestimmung von Übertragungsfunktionen von Prüfständen für Betriebsfestigkeitstests von SUVs und leichten Nutzfahrzeugen.

RoaDyn S: Mehrkomponenten-Prüfstandsmessnaben (Betriebsfestigkeit)

RoaDyn S660 nsp: 6-Komponenten-Prüfstandsmessnabe für SUVs, leichte Lkw und Rennwagen

	0000
	2 000
4	0
3	The state of the s
	000

Technische Dat	en		Тур 9248А2
Messbereich	F _x	kN	-60 60
	F _y	kN	-36 36
	F _z	kN	-60 60
	M _x	kN⋅m	- 7,5 7,5
	M_{y}	kN⋅m	-8,5 8,5
	M_z	kN⋅m	-7,5 7,5
Datenblatt		Nr.	9248A2_000-969

Beschreibung

Lastüberwachung und Bestimmung von Übertragungsfunktionen von Prüfständen für Betriebsfestigkeitstests von SUVs, leichten Nutzfahrzeugen und Rennwagen.

RoaDyn S6XT nsp: 6-Komponenten-Prüfstandsmessnabe für Nutzfahrzeuge

	week.	
09/1	533	
		P.

Technische Dat	en		Тур 9262А
Messbereich	F _x	kN	-250 250
	F _y	kN	-100 100
	F _z	kN	-250 250
	M _x	kN⋅m	<i>–</i> 50 50
	M_{y}	kN⋅m	-80 80
	M_z	kN⋅m	<i>–</i> 50 50
Datenblatt		Nr.	9262A_000-864

Beschreibung

Lastüberwachung und Bestimmung von Übertragungsfunktionen von Prüfständen für Betriebsfestigkeitstests von schweren Nutzfahrzeugen.

RoaDyn P/S: Mehrkomponenten-Messnaben (Reifencharakteristik)

RoaDyn P530: 5-/6-Komponenten-Messnabe für Reifen- und Radprüfstände für Pkw-Reifen (Piezo)

Technische Dat	en		Тур 9295В
Messbereich	F _x	kN	- 20 20
	F _y	kN	- 20 20
	F _z	kN	0 30
	M _x	kN⋅m	-7,5 7,5
	M_{y}	kN⋅m	- 3 3
	M_z	kN⋅m	- 3 3
Datenblatt		Nr.	9295B_000-991

Beschreibung

Zum Messen von Radkräften und -momenten an Reifen für Pkw auf Reifenprüfständen. Messung von Ungleichförmigkeiten u. Vibrationen sowie zur Ermittlung der Kenndaten von Reifen. Höchstdrehzahl 3 000 min¹. Felgengröße ≥13; andere Größen möglich (mit entspr. Adapter).

RoaDyn S530: 5-/6-Komponenten-Messnabe für Reifen- und Radprüfstände für Pkw-Reifen (DMS)

Technische Dat	ten		Тур 9289А013А
Messbereich	F _x	kN	-20 20
	F _y	kN	-20 20
	F _z	kN	0 30
	M_{x}	kN⋅m	<i>-</i> 7,5 7,5
	M_{y}	kN⋅m	-3 3
	M_z	kN⋅m	-3 3
Datenblatt		Nr.	9289A013_003-238e

Beschreibung

Zum Messen von Radkräften u. -momenten an Pkw-Reifen auf Reifenprüfständen. Mit Fokus auf Langzeitmessungen im Bereich Reifenlebensdauer und Reifenverschleiß sowie F&M Messungen. Höchstdrehzahl 3 000 min⁻¹. Felgengröße ≥13; andere Größen möglich (mit entsprechendem Adapter).

RoaDyn S5ST: 5-/6-Komponenten-Messnabe für Reifen- und Radprüfstände für schwere Pkw- und leichte Lkw-Reifen (DMS)

Technische Dat	en		Typ 9289A253
Messbereich	F _x	kN	-60 60
	F _y	kN	-40 40
	F _z	kN	0 60
	M_{x}	kN⋅m	- 29 29
	M_{y}	kN⋅m	- 15 15
	M_z	kN⋅m	- 9 9
Datenblatt		Nr.	9289A_000-986

Beschreibung

Zum Messen von Radkräften und -momenten an Reifen für schwere Pkw und leichte Nutzfahrzeuge auf Reifenprüfständen, um die entsprechenden Reifencharakteristiken und -kenndaten zu ermitteln; Höchstdrehzahl 1 850 min¹; Felgengröße ≥13"; andere Größen möglich (mit Adapter).

RoaDyn S5MT: 5-/6-Komponenten-Messnabe für Reifen- und Radprüfstände für leichte und mittelschwere Lkw-Reifen (DMS)

en		Typ 9289A263
F_x	kN	-100 100
F_y	kN	<i>–</i> 50 50
F _z	kN	0 100
M _x	kN⋅m	-40 40
M _y	kN⋅m	-30 30
M _z	kN⋅m	-15 15
	Nr.	9289A_000-987
	F _x F _y F _z M _x M _y	Fx kN Fy kN Fz kN Mx kN⋅m My kN⋅m Mz kN⋅m

Beschreibung

Zum Messen von Radkräften und -momenten an Reifen für leichte und mittelschwere Nutzfahrzeuge auf Reifenprüfständen, zur Ermittlung der entsprechenden Reifencharakteristiken und -kenndaten. Höchstdrehzahl 1 000 min⁻¹. Felgengröße ≥17,5; andere Größen möglich (mit Adapter).

RoaDyn P/S: Mehrkomponenten-Messnaben (Rollwiderstand)

RoaDyn S220: 2-Komponenten-Messnabe zur Messung von Rollwiderständen von Pkw und SUVs auf Reifenprüfständen (DMS)

Technische Daten		Typ 9289A103
Messbereich		
F_{x}	kN	-0,4 0,4
F_z	kN	0 15
Max. Belastung F _y	kN	- 0,5 0,5
Drehzahl	min ⁻¹	≤3 000
Betriebstemperaturbereich	°C	5 80
Datenblatt	Nr.	9289A_000-761

Beschreibung

Messen von Rollwiderstand an Pkw-Reifen auf Reifenprüfständen, basierend auf den gängigen Rollwiderstandsnormen ISO 28580; SAE J1269; ECE R117 etc.

RoaDyn S260: 2-Komponenten-Messnabe zur Messung von Rollwiderständen von Nutzfahrzeugen auf Reifenprüfständen (DMS)

	2 ' 113
10/	0
· / //	
	0 000
6	0

Technische Daten		Typ 9289A113
Messbereich		
F _x	kN	-1,2 1,2
F _z	kN	- 60 60
Max. Belastung F _y	kN	-1,5 1,5
Drehzahl	min ⁻¹	≤2 000
Betriebstemperaturbereich	°C	5 80
Datenblatt	Nr.	9289A_000-891

Beschreibung

Messen von Rollwiderstand an Nutzfahrzeugreifen auf Reifenprüfständen; basierend auf den gängigen Rollwiderstandsnormen ISO 28580; SAE J1269; ECE R117 etc.

Datenübertragung bei Fahrdynamik-, Reifen- und Betriebsfestigkeitstests

KiRoad Performance: Elektronikeinheit für Radkraftsensoren

Technische Daten		Тур 9817А
Gewicht Komplettsystem	kg	2,9
Abmessungen (LxBxH, mit Steck	kern) mm	199x182x127
Spannungsversorgung	V	10 36
Leistungsaufnahme max.	W	150
Betriebstemperaturbereich	°C	0 55
Schnittstellen		CAN, USB, Ethernet
Datenblatt	Nr.	9817A_003-233

Beschreibung

Hochwertiges, konsequent auf Kundenansprüche ausgelegtes, volldigitales Messwertübertragungs- und Elektroniksystem für Kistler 6-Komponenten-Radkraftsensorsysteme. Das System wird vorzugsweise für den Fahrversuch eingesetzt.

KiRoad Wireless P1 Onboard Unit für RoaDyn P1...

Technische Daten		Тур 9813В
Gewicht ca.	kg	2,5
Abmessungen (LxBxH)	mm	181x125x149
Spannungsversorgung	VDC	1028
Leistungsaufnahme max.	W	17
Betriebstemperaturbereich	°C	-20 60
Schnittstellen		CAN, USB, Ethernet
Datenblatt	Nr.	9813B_003-282d

Beschreibung

Zur Ausgabe der Messdaten an die Datenerfassung. Werden die Daten mit einem Kistler DTI-Logger erfasst, ist nur ein Kabel für die Onboard Unit notwendig, um Daten zu übertragen, die Stromversorgung zu übernehmen und die Konfiguration mit der Software KiCenter durchzuführen.

KiRoad Wireless P1 Wheel Unit für RoaDyn P1...

Technische Daten		Тур 9811В1
Gewicht ca.	Gramm	700
Abmessungen (LxBxH) ca.	mm	112x112x89
Spannungsversorgung		Lithium-Ionen-Akku
Anzahl Ladezyklen		>500
Betriebstemperaturbereich	°C	-50 60
Funkstandard		IEE 802.11n
Datenblatt	Nr.	9811B1_003-283d

Beschreibung

Zur Verwendung mit der KiRoad Wireless P1 Onboard Unit Typ 9813B... Das System dient der digitalen Übertragung von Messsignalen und Systemsteuerinformationen per WLAN zwischen dem Messrad und der Onboard Unit im Fahrzeuginneren.

CAN-Hub

Technische Daten		Typ 5608A3
Gewicht ca.	Gramm	380
Abmessungen (LxBxH)	mm	125x65x66
Steckertyp		D-Sub
Betriebstemperaturbereich	°C	- 25 50
Eingänge	Anz.	4
Ausgänge	Anz.	1
Datenblatt	Nr.	003-349

Beschreibung

Zur Verbindung mit CAN-Geräten.

Die neue DTI-Technologie

Neue Datenübertragungstechnologie für Fahrdynamik-, Reifen- und Betriebsfestigkeitstests – für ein einfaches und schnelles Testsetup.

DTI steht für Digital Transducer Interface; die neue Technologie von Kistler bietet ein durchgängiges Bussystem für komplette Applikationen. Für die Datenübertragung, Synchronisation, Konfiguration und Stromversorgung wird nur ein einziges Kabel benötigt – das verringert den Verdrahtungsaufwand im Fahrzeug deutlich. Dadurch kann die eigentliche Messung sehr effizient durchgeführt und Fehlerquellen in der Anwendung reduziert werden.

Derzeit bestehen folgende Möglichkeiten, die DTI-Technologie von Kistler zu nutzen:

- Neuanschaffung von DTI-Sensorik (z. B. Correvit L-Motion)
- Umbau bestehender Sensorik von Kistler, Integration der DTI-Funktion in vorhandenes Equipment – analog, CAN oder Event-Modul (Event-Mod)
- Umrüstung von Drittanbieter-Sensorik, Integration der DTI-Funktion in Sensoren, die vom Kunden bereitgestellt werden – analog, CAN oder Event-Modul (Event-Mod)
 Die DTI-Funktion wird entweder im Sensor, im Kabel oder im Stecker integriert.

DTI-Logger: Datenübertragung

Technische Daten		Тур С5343А
Gewicht ca.	Gramm	900
Abmessungen (LxBxH)	mm	164x125x65
Spannungsversorgung	VDC	1028
Betriebstemperaturbereich	°C	-25 50
Eingänge		DTI
Ausgänge		Ethernet TCP/IP
Datenblatt	Nr.	5434A_003-274d

Beschreibung

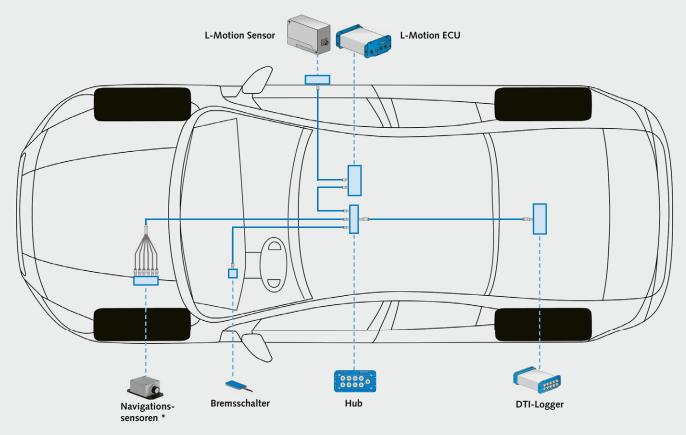
Zur Aufzeichnung der Messdaten und Konfiguration, Synchronisation, Spannungsversorgung. Weitere Informationen: www.kistler.com/de/anwendungen/automotive-research-test/dti-technologie/

DTI-Hub

Technische Daten		Typ 5608A1
Gewicht ca.	Gramm	430
Abmessungen (LxBxH)	mm	125x65x66
Steckertyp		LEMO
Betriebstemperaturbereich	°C	- 25 50
Eingänge		8
Ausgänge		1
Datenblatt	Nr.	003-349

Beschreibung

Der Anschluss über einen Hub empfiehlt sich, wenn viele Sensoren bzw. Kanäle zum Einsatz kommen; so kann mit kürzeren Kabeln gearbeitet werden, was die Verkabelung im Fahrzeug vereinfacht.


CAN-DTI Hub

Technische Daten		Typ 5608A2
Gewicht ca.	Gramm	380
Abmessungen (LxBxH)	mm	125x65x66
Steckertypen		D-Sub / LEMO
Betriebstemperaturbereich	°C	- 25 50
Eingänge		4
Ausgänge		1
Datenblatt	Nr.	003-349

Beschreibung

Der Anschluss über einen Hub empfiehlt sich, wenn viele Sensoren bzw. Kanäle zum Einsatz kommen; so kann mit kürzeren Kabeln gearbeitet werden, was die Verkabelung im Fahrzeug vereinfacht.

* z. B. 6 Ausgänge (3x Beschleunigung, 3x Drehrate)

Beispiel-Applikation: Bremswegmessung – Anschluss an den DTI-Logger über einen Hub, z. B. DTI-Hub, Typ 5608A1

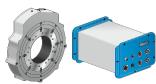
DTI-Datenübertragung

Mit der DTI-Technologie von Kistler kann ein durchgängiges Bussystem für die komplette Applikation verwendet werden. Sämtliche Signale werden direkt in den DTI-Sensoren von Kistler in einen digitalen Ausgang umgewandelt. Die Sensordaten fließen in den zentralen DTI-Logger von Kistler und werden via Ethernet zur Auswertung auf den Rechner übertragen. Das Testsetup ist mit einer automatischen Sensorerkennung so einfach wie noch nie: Einbauposition, Kalibrierwerte sowie relevante physikalische Größen werden mit der Messsoftware KiCenter von Kistler automatisch erkannt und können im GUI konfiguriert werden. Höchste Prozesssicherheit und effiziente Zeitnutzung sind garantiert.

Datenübertragung konventionell	DTI-Datenübertragung
Jeder Sensor muss separat an DAQ angeschlossen werden	BUS-System; einfache Vernetzung von Sensoren
Sensoren müssen u. U. einzeln an Spannungsversorgung angeschlossen werden	Spannungsversorgung der Sensoren erfolgt über DTI-Logger
Jeder Sensor muss separat an Konfigurations-PC angeschlossen und konfiguriert werden	Angeschlossene Sensoren können direkt über den DTI-Logger konfiguriert werden
Hoher Verdrahtungssaufwand	Minimaler Verdrahtungsaufwand
Sensoreinstellungen müssen in DAQ importiert werden	Kalibrierdaten in DTI-Modulen/Sensoren hinterlegt
Synchronisierung der Sensoren aufwendig oder nicht möglich	Synchronisierung des Gesamtsystems erfolgt über DTI-Schnittstelle

DTI-Systemkomponenten

Sensoren und Elektronik

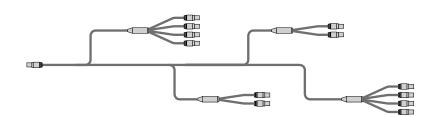

DTI-Logger, Typ 5343A, Art.-Nr. 18032939

L-Motion ECU Standard, Typ 5335A, Art.-Nr. 18033082 S-Motion ECU Standard, Typ 2055A, Art.-Nr. 18034449

L-Motion, ECU Small, Typ 5337A, Art.-Nr. 18032940 S-Motion ECU Small, Typ 2055A, Art.-Nr. 18034450

Kistler Messlenkrad, Typ 5612A, Art.-Nr. 18025194, 18025358

Lichtschranke DTI, Art.-Nr. 18034433


Pedalkraftsensor DTI, Art.-Nr. 18034424

Bremsschalter DTI (blau), Art.-Nr. 18034555

DTI-Kabel und Kabelbäume

Kabel und Kabelbäume können individuell konfiguriert werden. Hierzu überprüfen wir im Vorfeld die Machbarkeit.

Weitere Komponenten	Typ/Art. Nr.
DTI-Konverter CAN, Typ 5639	18033804
• DTI-Konverter WPT (Radinkrementalgeber)	55163827
 WPT Sensor mit DTI-Funktion 	CWPTA461
• 1-Kanal DTI-Integration digital *	18034016
• 1-Kanal DTI-Integration analog *	18034245
• 3-Kanal DTI-Integration analog *	18034246
(Kabel, Stecker, Platine, Schale)	

^{*} wahlweise als Kabellösung oder Einbauvariante (beigestellte Sensoren)

Vorteile der DTI-Technologie auf einen Blick:

- Effizient und platzsparend: ein Kabel für Daten, Synchronisierung, Konfiguration und Stromversorgung
- Dezentrale Datenerfassung möglich
- Höchste Stecksicherheit
- Mit bestehenden Sensoren kompatibel

Kalibrierung eines RodDyn Radkraftsensors am Hexapoden-Messstand

Service nach Maß für Ihren Erfolg

Kalibrierung RoaDyn Radkraftsensoren

Bei der Kalibrierung der RoaDyn Radkraftsensoren setzt Kistler mit einem einzigartigen Hexapoden-Messstand neue Maßstäbe. Nach der Kalibrierung werden alle Ergebnisse in einer Datenbank gespeichert. Dies ermöglicht eine einfache, zuverlässige und effiziente Prüfmittelüberwachung in Übereinstimmung mit der Qualitätsmanagementnorm DIN EN ISO 9001:2008. Mögliche Folgekosten werden reduziert – und Sie können sich jederzeit auf präzise Messresultate verlassen. Weiterführende Informationen dazu finden Sie im Dokument 960-077 (Calibration).

Kalibrierung optischer Sensoren

Correvit Sensoren von Kistler werden an einem Rollenprüfstand (Weg und Geschwindigkeit) unter genauer Betrachtung der Herstellervorgaben kalibriert und mit einem Werkskalibrierschein ausgeliefert. Für MSW-Sensoren und -Datenerfassungssysteme bieten wir Ihnen die Möglichkeit einer Kalibrierung nach ISO 17025. Für die Kalibrierung von Geschwindigkeits- und anderen Sensoren kontaktieren Sie bitte Ihren lokalen Kistler Ansprechpartner.

Unsere Serviceleistungen auf einen Blick:

- Umfassende Produkt- und Anwendungsberatung zu Messsystemen und Applikationen
- Kundenspezifische Sensorausführungen
- Kalibrier- und Reparaturservice
- Praxisnahe Schulungen zu Produkten und Systemen

Trainingskurse: Know-how aus der Praxis

Der schnellste Weg zum Messprofi führt über einen Trainingskurs von Kistler. Lassen Sie sich unsere Sensoren und Messsysteme von erfahrenen Trainern erläutern und erhalten Sie dabei wichtige Praxistips für Ihre eigene Arbeit. Neben sorgfältig erarbeiteten Schulungsunterlagen legen wir großen Wert darauf, dass alle Teilnehmer die Geräte selbst einsetzen und wichtige Handgriffe üben können.

Kistler – weltweit im Einsatz für unsere Kunden

Das Kistler Vertriebs- und Service-Netzwerk sichert einen engen Kontakt zum Kunden. Weltweit widmen sich rund 1 860 Mitarbeiter an 61 Standorten der Entwicklung neuer Messlösungen und bieten individuelle anwendungstechnische Unterstützung vor Ort.

Ihre Ansprechpartner

Ganz gleich, ob Sie von uns eine Beratung wünschen oder Support bei der Montage benötigen – auf unserer Website finden Sie die Kontaktadresse ihres persönlichen Ansprechpartners.

Datenblätter und Unterlagen Nutzen Sie unsere Online-Suche, um Datenblätter, Prospekte oder CAD-Daten herunterzuladen.

Schulungs- und Trainingsveranstaltungen Schulungen und Trainingskurse, bei denen unsere Sensoren und Messsysteme von erfahrenen Kistler Trainern erläutert werden, sind die effizienteste Art, sich das notwendige Fachwissen anzueignen.

Kistler Group

Eulachstrasse 22 8408 Winterthur Switzerland Tel. +41 52 224 11 11

Kistler Group products are protected by various intellectual property rights. For more details visit **www.kistler.com**. The Kistler Group includes Kistler Holding AG and all its subsidiaries in Europe, Asia, the Americas and Australia.

Find your local contact on www.kistler.com

