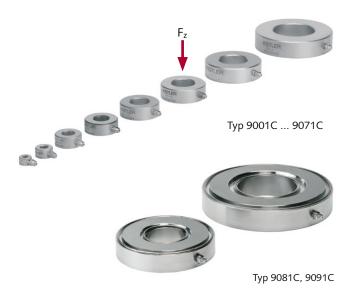


Piezo Kraftsensoren

Piezoelektrische Kraftmessringe für Zug- und Druckkräfte von 7,5 kN bis 1 200 kN

Typen 9001C, 9011C, 9021C, 9031C, 9041C, 9051C, 9061C, 9071C, 9081C, 9091C

Piezo Kraftsensoren, resp. piezoelektrische Kraftmessringe, zur präzisen Messung von Zug- und Druckkräften in höchster Auflösung.


- Zwei kalibrierte Messbereiche
- Linearität einschließlich Hysterese ≤±0,5 %
- Extrem hohe Steifigkeit
- Sehr kompakte Bauform
- Extrem tiefe Ansprechschwelle
- Schutzart: IP68, kabelabhängig
- Keine Alterung, unbegrenzte Lebensdauer

Beschreibung

Die 90x1 Familie ist eine piezoelektrische (PE) Sensor-Reihe zur Kraftmessung in z-Richtung. Die zu messende Kraft wird durch Deckel und Boden des dicht verschweißten Stahlgehäuses direkt auf die innenliegenden Sensorelemente aus Quarz übertragen. Quarz gibt bei einer mechanischen Belastung eine proportionale elektrische Ladung ab. Eine herausragende Eigenschaft von Quarz ist eine sehr tiefe Ansprechschwelle und damit eine hohe Sensorempfindlichkeit, die über den gesamten Messbereich extrem linear bleibt. Damit ist das Verhalten in einem bestimmten Messbereich bei allen PE-Sensoren praktisch identisch, unabhängig von ihrer Baugröße.

Dies hat drei einzigartige Vorteile:

- Überlastsicherheit: Auch sehr kleine Kräfte können mit einem Sensor mit großem Messbereich gemessen werden.
- Hohe Steifigkeit: Um eine möglichst steife Konstruktion zu erreichen, kann auch ein größerer Sensor benutzt werden, ohne dass Einbußen bei der Qualität des Messsignals in Kauf genommen werden müssen.
- Gruppierung: Mehrere Sensoren können einfach summiert werden, indem sie elektrisch parallel an einen einzigen Ladungsverstärker angeschlossen werden. Die Ausgangsspannung ist dann proportional zur Summe aller wirkenden Kräfte.

Anwendung

Eine robuste Bauart, Zuverlässigkeit sowie gute Wiederholgenauigkeit der Messwerte sind die Hauptmerkmale dieser Kraftsensoren. Je nach Größe der Kraft kann quasistatisch gut über mehrere Minuten oder Stunden gemessen werden, wobei die Stabilität des Nullpunkts maßgebend vom nachgeschalteten Ladungsverstärker bestimmt wird.

Dynamische Messungen (AC-mode, Spitze-zu-Spitze) können hingegen beliebig lange dauern. Die Kraftmessringe haben eine praktisch unbegrenzte Lebensdauer

Anwendungsbeispiele

- Kräfte in der Montagetechnik
- Kräfte beim Punktschweißen
- Kräfte in Pressen
- Kraftänderungen in Schraubverbindungen bei hoher statischer Vorlast
- Schlag- und Wechselfestigkeit
- Schnitt- und Umformkräfte
- Brems- und Aufprallkräfte

Technische Daten

--> zur Gewährleistung der Spezifikationen sind die Sensoren mit 20% Vorlast zu betreiben und gegenzuprüfen!

Тур		9001C	9011C	9021C	9031C	9041C	9051C	9061C	9071C	9081C	9091C	
Nennkraft	kN	7,5	15	35	60	90	120	200	400	650	1 200	
Kalibriervorlast	kN	1,5	3	7	12	18	24	40	80	130	240	
Kalibrierbereich 1	kN	0 6,0	0 12	0 28	0 48	0 72	0 96	0 160	0 320	0 520	0 960	
Kalibrierbereich 2	kN	0 0,6	0 1,2	0 2,8	0 4,8	0 7,2	0 9,6	0 16	0 32	0 52	0 96	
Grenzkraft	kN	10,5	21	49	84	126	168	280	560	715	1 320	
Empfindlichkeit	pC/N	-4,1±0,2	-4,2±0,2			-4,4	±0,2			-2,15±0,2	-2,1±0,2	
Linearität inkl. Hysterese 1)	%FSO	±0,5									:1	
Eigenfrequenz (frei-frei) 2), calc.	kHz	≥170	≥120	≥75	≥53	≥51	≥42	≥32	≥20	≥14	≥9	
Axiale Steifigkeit (calc.)	kN/µm	1,1	1,6	3,3	5,2	7,5	9,8	15,4	27,7	35,7	52,3	
Quersteifigkeit (calc.) 3)	kN/µm	0,20	0,31	0,74	1,3	1,8	2,4	3,9	7,6	9,2	12,9	
Schubsteifigkeit (calc.)	kN/µm	0,26	0,4	0,9	1,5	2,2	2,8	4,6	9,0	11,2	15,7	
Torsionssteifigkeit (calc.)	kNm/°	0,13	0,39	2,0	4,9	10	18	47	190	318	1 070	
Biegesteifigkeit (calc.)	kNm/°	0,13	0,39	2,02	5,2	11	21	55	217	381	1 311	
Zulässiges Biegemoment 4)	N⋅m	±5.3	±15	±61	±130	±244	±390	±800	±2 443	± 4 430	±13 260	
(Mz = 0), calc.												
Max. Abweichung der Empfindlichkeit												
Tref = 25°C	%/K					-0,	.01					
Betriebstemperaturbereich	°C				-70 .	. 200				-40 100) (für C-Typ)	
Isolationswiderstand (@23 °C)	Ω				≥1*10 ¹⁴			-	≥1*10 ¹³	≥1*	10 ¹²	
Kapazität	pF	14	17	33	52	70	93	149	303	750	890	
Steckertyp						KIAG 10	-32 neg.					
Schutzart (IEC 60529)	IP					siehe Tabe	elle Seite 9					
Sensormaterial												
Platten					1,4	821				1,4	460	
Mäntel					1,4	542				1,4	057	
ewicht	g	3	7	20	36	70	80	157	370	910	2 180	

¹⁾ Bandbreite bezogen auf die Kalibrierbereiche

²⁾ Im nicht eingebauten Zustand (nicht vorgespannt), Eigenfrequenz wird durch die Einbauverhältnisse reduziert

³⁾ Widerstand des Sensors gegen Scher- und Biegeverformung. (Theoretische) Annahme: Der Sensor ist an der Unterseite fixiert, die Scherkraft wirkt an der Oberseite, so dass die Hebellänge gleich der gesamten Sensorhöhe ist.

⁴⁾ Mit einer Vorspannung von 50 % der Nennkraft

measure. analyze. innovate.

Abmessungen Typ 9001C ... 9071C

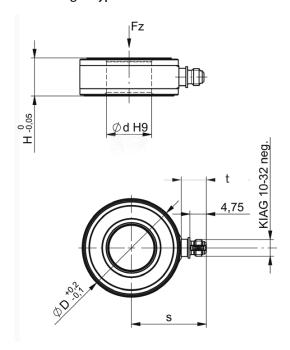


Abb. 1: Abmessungen Typ 9001C ... 9071C

Abmessungen

Туре	d	D	Н	s	t
9001C	4,1	10,3	6,5	12,75	7,25
9011C	6,5	14,5	8	14,85	7,25
9021C	10,5	22,5	10	18,6	7,25
9031C	13	28,5	11	21,65	7,25
9041C	17	34,5	12	24,65	7,25
9051C	21	40,5	13	27,65	7,25
9061C	26,5	52,5	15	33,65	7,25
9071C	40,5	77,25	17	45	6,75

Abmessungen Typ 9081C und 9091C

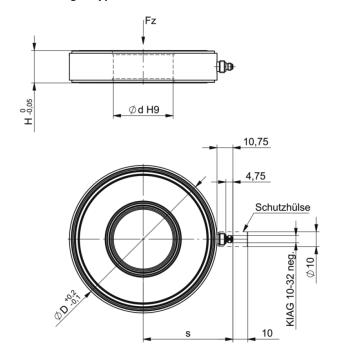


Abb. 2: Abmessungen Typ 9081C und 9091C

Abmessungen

Тур	d	D	Н	S
9081C	40,5	100	22	60,75
9091C	72	145	28	83,25

Seite 3/11

Vorspannung

Piezoelektrische Kraftsensoren werden immer vorgespannt in einer Einbaustruktur verwendet. Generell wird eine Vorspannkraft von mindestens 20 % der Nennkraft empfohlen. Damit erhält man den empfohlenen, effektiven Messbereich und die konstruktionsbedingten Nichtlinearitäten im untersten Lastbereich werden eliminiert.

Gründe für die Vorspannung:

- Höchstmaß an Linearität und Stabilität des Messsignals.
- Messung von Zug- und Druckkräften, je nach Größe der Vorspannung (s.Bild)
- Ausnutzung der hohen Sensorsteifigkeit für einen großen Frequenzbereich
- Ideale Kraftverteilung

Die Vorspannung muß so gewählt werden, dass die Summe von Vorspannkraft (Fv) und auftretender Prozeßkraft (±Fz) jederzeit innerhalb des Messbereichs des Sensors liegt (s. Grafik). Sofern es prozeßtechnisch möglich ist, sollte die durchschnittliche Belastung des Sensors bei 50 % der Nennkraft liegen. An diesem Arbeitspunkt ist die Toleranz gegenüber Biegemomenten am größten (s.u. "Biegemomente").

Beim Vorspannen muß die Kraft mit dem Sensor selbst gemessen werden. Dabei ist die in den technischen Daten angegebene Empfindlichkeit zu verwenden. Die Montageflächen müssen eben, steif und wenn möglich geschliffen sein. Ein Montagekit Typ 9422A ist im Lieferumfang enthalten.

Sensormontage

Die Kraftsensoren Typ 90x1C müssen grundsätzlich auf planen, steifen und parallelen Ebenen unter Vorspannung eingebaut werden, wobei die Kraft gleichmäßig verteilt sein sollte. Um das für verschiedenste Anwendung gewährleisten zu können, bietet Kistler ein umfangreiches Sortiment an Einbauzubehör an.

Kraftmessdosen/Kraftaufnehmer

Die Messunterlagsscheiben Typen 9001C ... 9071C sind auch einbaufertig als bereits kalibrierte Kraftmessdosen erhältlich (Typen 9301C ... 9371C). Sie sind ideal zum Messen von Druck- und Zugkräften und eine Neukalibrierung nach der Montage ist nicht mehr nötig.

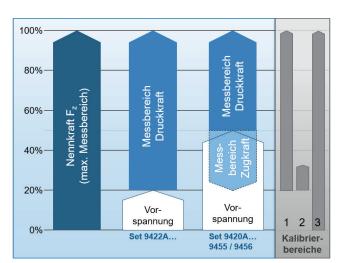


Abb. 3: Mess- und Kalibrierbereiche

Kalibrierung und Messbereiche

Die zu erwartenden Fehlerabweichungen eines Sensors sind direkt abhängig von der Größe des Messbereichs und der Wahl des Arbeitspunktes. Je kleiner der Messbereich, desto besser die Linearität und Hysterese. Typischerweise wird ein Sensor mit 20 % der Nennkraft vorbelastet, was die Qualität des Sensors deutlich verbessert. Die Sensoren der 90x1 Reihe werden je nach Größe in 2 unterschiedlichen Bereichen kalibriert (s.Grafik).

Messung direkt im Kraftfluss oder als Kraftnebenschluss

Piezoelektrische Kraftsensoren werden entweder direkt im Kraftfluss oder im Kraftnebenschluss, eingebettet in eine Maschinenstruktur, eingesetzt.

Direkte Kraftmessungen erreichen die höchste Genauigkeit und Auflösung, da der größte Teil der Prozesskraft direkt durch den Sensor fließt. Bei Kraftnebenschlussmessungen hingegen werden die Sensoren nur mit einem Bruchteil der Prozesskraft belastet und erreichen wesentlich höhere Messbereiche, allerdings bei reduzierter Empfindlichkeit.

Eine detaillierte Betriebsanleitung mit weiterführenden Erklärungen zu Einbau, Dimensionierung und Verkabelung befindet sich im Downloadbereich unserer Homepage www.kistler.com.

measure. analyze. innovate.

Biegemoment

Biegemomente M_B ($M_x + M_y$) erhöhen die Spannung auf einer Seite des Sensors und verringern sie auf der anderen Seite. Dadurch entsteht eine ungleichmässige Verteilung der Axialkraft auf den Sensor, was bei einem übermässigen Biegemoment eine Verfälschung der Messergebnisse zur Folge hat.

Im Extremfall kann dies zu einer einseitigen Überbelastung des Sensors oder zum Verlust des Reibschlusses führen, was dessen Zerstörung oder ein Verrutschen der Struktur bedeutet. Letztlich hängt es von der Axialkraft F_z ab, welcher der beiden Fälle bei einer unzulässig hohen Biegung zuerst eintritt.

Maximal mögliches Biegemoment

Тур	Grenzkraft F₂ [kN]	max. Biegemoment M _B [N·m]
9001C	7,5	5,3
9011C	15	15
9021C	35	61
9031C	60	130
9041C	90	244
9051C	120	390
9061C	200	800
9071C	400	2 443
9081C	650	4 430
9091C	1 200	13 260

Wir verwenden eine normierte Formel zur Berechnung des zulässigen Biegemoments:

$$M_B[\%] \le 100\% - 2x |50\% - F_z[\%]|$$

 F_z ist die gesamte Axialkraft auf den Sensor, also die Summe aus der Vorspannung F_v und der Prozesskraft F_p .

Biegemomentkurve

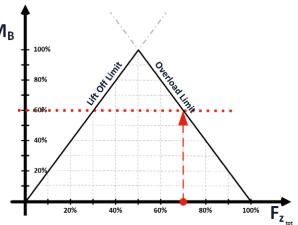


Abb. 4: Biegemoment in Abhängigkeit der Axialkraft Fz

Beispiel

Ein Kraftmessringe Typ 9031C... wird mit F_v = 17 kN vorbelastet. Wie hoch ist das zulässige Biegemoment bei Prozesskräften im Bereich F_p = 0 ... 20 kN?

$$F_{v}[\%] = \frac{17 \text{ kN}}{60 \text{ kN}} = 28 \%$$

$$F_{p}[\%] = \frac{0 \text{ kN}}{60 \text{ kN}} \dots \frac{20 \text{ kN}}{60 \text{ kN}} = 0 \dots 33 \%$$

$$F_z[\%] = F_v[\%] + F_p[\%] = 28 ... 61 \%$$

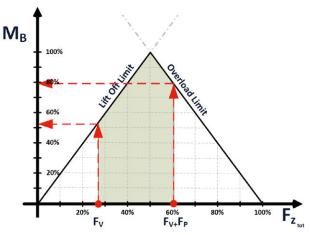


Abb. 5: max. Biegemoment in Abhängigkeit von Vorlast und Prozesskraft

$$M_B[28 \%] = 100 \% - 2 \times |50 \% - 28 \%| = 56 \%$$

$$\triangleq 72,8 \text{ Nm}$$

$$M_B[61 \%] = 100 \% - 2 \times |50 \% - 61 \%| = 78 \%$$

$$\triangleq 101,4 \text{ Nm}$$

Das zulässige Biegemoment ist abhängig von der aufgebrachten Gesamtkraft F_z und erreicht sein absolutes Maximum bei 30 kN, der halben axialen Nennkraft. Im vorliegenden Fall wäre das bei einer Prozesskraft von 13 kN der Fall (17 kN+13 kN = 30 kN).

Wenn der Kraftverlauf im Prozess nicht bekannt ist, wird der niedrigste Wert als Referenz definiert: 72,8 Nm.

Achtung

Quer- respektive Scherkräfte $F_{x,y}$ und/oder ein Drehmoment M_z reduzieren den Messbereich zusätzlich. Falls Querlasten oder Drehmomente angenommen werden müssen und die Sicherheitsmargen bezüglich Biegemoment eher gering sind, setzen Sie sich vorgängig mit unserem Vertrieb vor Ort in Verbindung.

Zugkräfte

Zugkräfte sind nur applizierbar, solange die Vorlast höher ist als die negative Kraft: Sie reduzieren die (Vor-)Last auf den Sensor, was piezoelektrisch messbar ist.

Seite 5/11

measure, analyze, innovate,

Vorspannsatz Typ 9420Ax1

Der Vorspannsatz 9420Ax1 kann verwendet werden, um Druck- und Zugkräfte in einer Applikation zu messen. Das Set mit Zentrierhülse (1) und hochfestem Vorspannbolzen (2) lässt eine Vorspannung von bis zu 50 % zu und ist für einen möglichst geringen Kraftnebenschluss und eine ideale Zentrierung konzipiert. Gleichzeitig sichert er eine optimale Krafteinleitung. Mit den beigelegten Isolierscheiben (5) kann der ganze Sensor elektrisch neutral verbaut werden.

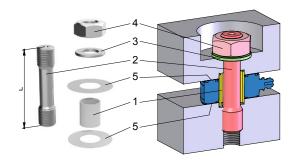


Abb. 6: Einbau Vorspannsatz Typ 9420Ax1

3) Unterlagscheibe

4) Sechskantmutter

	Тур	9001C	9011C	9021C	9031C	9041C	9051C	9061C	9071C
Vorspannset	Тур	9420A01	9420A11	9420A21	9420A31	9420A41	9420A51	9420A61	9420A71
Kraftnebenschluss	%	≈10	≈7	≈8	≈9	≈8	≈7	≈7	≈7
Gewinde		M4x0,5	M5x0,5	M8x1	M10x1	M12x1	M14x1,5	M20x1,5	M27x2

Vorspannschraube Typ 9422Ax1

Kunden, die nur positive Kräfte in Fz Richtung (Druckkräfte) messen, benötigen eine geringere Vorlast. Für sie bietet sich das Set 9422Ax1 bestehend aus Vorspannschraube (1) und Zentrierklammer (2) an. Die Schraube kann bis zu 30 % des Nennbereichs vorbelastet werden. Weiteres Zubehör wie z.B. Isolierscheiben können wenn nötig separat geordert werden.

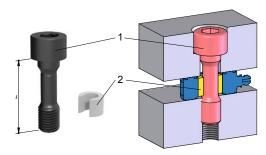


Abb. 7: Einbau Vorspannschraube Typ 9422Ax1

	Тур	9001C	9011C	9021C	9031C	9041C	9051C	9061C	9071C
Vorspannset	Тур	9422A01	9422A11	9422A21	9422A31	9422A41	9422A51	-	-
Kraftnebenschluss	%	≈7	≈8	≈9	≈9	≈9	≈9		
Gewinde		M3x0,5	M5x0,8	M8x1,25	M10x1,5	M12x1,75	M14x2		

Vorspannsets Typ 9455S und Typ 9456S

Mit den Vorspannelementen des Typs 9455S and 9456S können Vorspannkräfte bis zu 730 kN ohne den Einsatz zusätzlicher Werkzeuge erreicht werden.

	Тур	9081C	9091C
Vorspannset	Тур	9455S	9456S
Kraftnebenschluss	%	≈9	≈9
Gewinde		M40x2,0	M64x3,0

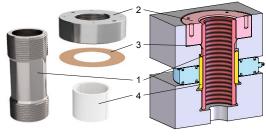


Abb. 8: Einbau Vorspannsatz Typ 9455S/9456S

Zubehör

Druckverteilring Typ 95x5

Auflageflächen müssen ebenso plan und steif sein wie die Kontaktflächen des Sensors selbst. Falls sie nicht feinbearbeitet werden können, müssen örtliche Überlastungen und Beschädigungen der Sensoroberfläche durch Einsetzen eines Druckverteilrings (1) vermieden werden.

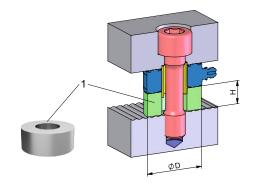


Abb. 9: Einbau Druckverteilring Typ 95x5

	Тур	9001C	9011C	9021C	9031C	9041C	9051C	9061C	9071C
Druckverteilring	Тур	9505	9515	9525	9535	9545	9555	9565	9575
D	mm	10	14	22	28	34	40	52	75
Н	mm	6	8	10	11	12	13	15	17

Druckkappe Typ 95x9

Die zu messende Kraft muß gleichmäßig auf die Messunterlagscheibe verteilt werden. Wenn ein punktförmig konzentrierter Kraftangriff nicht vermieden werden kann, sorgt eine auf den Sensor abgestimmte Druckkappe (1) für eine ideale Kraftverteilung.

- 2) Zentrierzapfen
- 3) Zylinderschraube

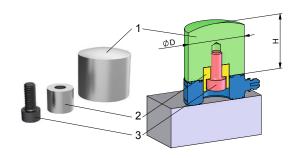


Abb. 10: Einbau Druckkappe Typ 95x9

	Тур	9001C	9011C	9021C	9031C	9041C		9061C	9071C
Druckkappe	Тур	9509	9519	9529	9539	9549	9559	9569	9579
D	mm	10	14	22	28	34	40	52	75
Н	mm	10	15	20	25	30	40	50	60

Kugelscheibe Typ 95x3

Können keine genau parallelen Flächen bereitgestellt werden, muß eine Kugelscheibe (1) zum Ausgleich verwendet werden. Es bleibt aber die Voraussetzung bestehen, dass die Auflagefläche fein bearbeitet und eben sein muß.

H* = Höhe bei 0° Parallelität

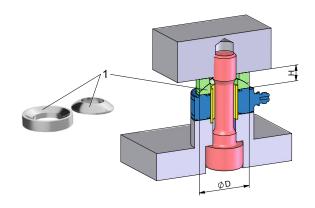


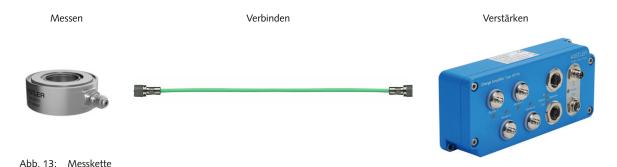
Abb. 11: Einbau Kugelscheibe Typ 95x3

	Тур	9001C	9011C	9021C	9031C	9041C	9051C	9061C	9071C
Kugelscheibe	Тур	-	9513	9523	9533	9543	9553	9563	9573
D	mm		12	21	24	30	36	52	75
Н	mm		4	6	7	8	10	14	20

Isolierscheiben Typ 95x7

Bei Störungen durch Erdschleifen oder unterschiedlichem elektrischen Potential zwischen Messobjekt und Verstärker, muß der Sensor isoliert eingebaut werden. Die Isolierscheiben-Sets sorgen für eine saubere Potentialtrennung. Für eine einwandfreie Funktion sollten die Isolierscheiben nur einmal verwendet werden und nur auf fein bearbeiteten Auflageflächen zum Einsatz kommen.

Abb. 12: Isolierscheiben Typ 95x7


Achtung

Diese Isolierscheiben mit Kragen können nur dort eingesetzt werden, wo keine durchgehende Zentrierbuchse eingebaut ist.

	Тур	9001C	9011C 9021C 903		9031C	9041C	9051C	9061C	9071C			
Isolierscheibe	Тур	-	9517	9527	9537	9547	9557	9567	9577			
D	mm		14	22	28	34	40	52	75			
Н	mm			1,125								

Messkette

Verbindungskabel

Alle Sensoren des Typs 9001 ... 9091 verfügen über einen KIAG 10-32 neg. Anschluß und sind entsprechend mit allen Kabelstecker KIAG 10-32 pos. kompatibel. Als Anschlußkabel für piezoelektrische Sensoren dürfen ausschließlich hochisolierende Koaxialkabel mit geringer Kapazität verwendet werden, die beim Bewegen nur eine sehr geringe Reibungselektrizität erzeugen. Kistler verwendet hier Kabel aus hochwertigem PFA oder öldichtem FPM.

Die IP-Schutzklasse nach EN60529 ist sensorseitig grundsätzlich vom verwendeten Stecker abhängig. Für IP65 wird der normale Kabelstecker 10-32 KIAG mit Rändelmutter verwendet, bei erhöhten Anforderungen in rauer Umgebung kommt die industrietaugliche Version 10-32 KIAG pos. int. zum Einsatz, die bei Bedarf mit dem Sensorgehäuse dicht verschweißt werden kann und IP68 erreicht.

Kompatibilitäten von Kabeln und Ladungsverstärkern

										Kanäle	1	1	17	1-7	1	1	1-{	1,4	,4,	4,
Kabel	Kabeleigenschaften	Läng	e [m]	Temp.	IEC/EN		Stecker Sensor	Stecker Verstärker	IEC/E	EN	IP65	IP65	IP60	IP67	IP 20	IP40	IP40	IP 20	IP 20	IP20
Kapei	Kabeleigenschaften	min	max	Bereich	60	529	Stecker Sensor	Stecker verstarker	6052	29	dl	Ē	₫	1P67	.dl	₫	ď	Ğ.	⊒	⊒.
1631C	PFA	0,1	100				KIAG 10-32 pos.	BNC pos.	IP40		-	✓	✓	- 🗸	√	✓	✓	√ .	Л.	√
1641B	PFA	0,1	100				KIAG 10-32 pos. 90°	BNC pos.	11-40		-	\checkmark	✓	- 🗸	√	✓	\checkmark	√ .	√ .	√
1633C	PFA	0,1	50	−55200°C	=	IP65	KIAG 10-32 pos.	TNC pos.			-	✓	\checkmark	- -	-	-	-	-	-	-
1635C	PFA	0,1	15		geschraubt		KIAG 10-32 pos.	KIAG 10-32 pos.	IP65		\checkmark	-	-	√ -	-	-	-	-	-	-
1957A	PFA mit Stahlgeflecht	0,1	10		esch		KIAG 10-32 pos.	KIAG 10-32 pos.			>	-	-	√ -	-	-	-	-	-	-
1900A23A12	PFA hochflexibel,	0,3	20	-40200°C	er g		KIAG 10-32 pos. 6kt	BNC pos.	IP40	ubt	-	\checkmark	✓	- 🗸	√	✓	\checkmark	√ .	√ .	√
1900A23A11	schleppkettentauglich	0,3	20	-40200 C	Stecker	IP67	KIAG 10-32 pos. 6kt	KIAG 10-32 pos. 6kt	IP67	chraubt	\checkmark	-	-	√ -	-	-	-	-	-	-
1900A21A12	FPM mit flexiblem Metallschlauch	0.4	20	–20200°C	Ś	IP07	KIAG 10-32 pos. 6kt	BNC pos.	IP40	ges	-	\checkmark	✓	- 🗸	√	✓	\checkmark	√ .	√ .	√
1900A21A11	I FIVI IIIIC HEXIDIEIII IVIETAIISCHIAUCH	0,4	20	-20200 C			KIAG 10-32 pos. 6kt	KIAG 10-32 pos. 6kt	IP67	cker	\checkmark	-	-	√ -	-	-	-	-	-	-
1983AD	FPM	0,1	20	–20200°C		IP68	KIAG 10-32 pos. int.	BNC pos.	IP40	Ste	1	\checkmark	\checkmark	- 🗸	√	✓	\checkmark	√ .	√ .	✓
1939A	PFA	0,1	20		1		KIAG 10-32 pos. int.	BNC pos.	IP40		-	✓	✓	- 🗸	√	✓	\checkmark	✓.	√ .	√
1941A	PFA	0,1	20	-55200°C	Stecker erschweisst ¹	IP67	KIAG 10-32 pos. int.	TNC pos.			1	\checkmark	\checkmark		-	-	-	-	-	-
1969A	PFA mit Stahlgeflecht	0,5	10	-33200 C	Stecker schweis	11-07	KIAG 10-32 pos. int.	KIAG 10-32 pos. int. ²	IP65		\checkmark	-	-	√ -	-	-	-	-	-	-
1967A	PFA mit Stahlgeflecht, isoliert	0,5	10	Str		KIAG 10-32 pos. int.	KIAG 10-32 pos. int. ²			>	-	-	√ -	-	-	-	-	-	-	
1983AC	FPM	0,1	5			IP68	KIAG 10-32 pos. int.	KIAG 10-32 pos. int. ²	IP65		\checkmark	-	-	√ -	-	-	-	-	-	-
1700A29	Winkeladapter 90°			−55200°C		IP65	KIAG 10-32 pos.	KIAG 10-32 pos.	IP65											

geschraubt: IP65 2 verschweisst: IP67

Seite 9/11

Ladungsverstärker

Ausschlaggebend für die Wahl des richtigen Ladungsverstärkers zur entsprechenden Applikation sind verschiedene Kriterien. Zu den wichtigsten gehören die Anzahl Kanäle, der Messbereich, die Messart oder der Frequenzbereich. An dieser Stelle wird lediglich eine tabellarische Zusammenfassung dargestellt um eine Übersicht zu geben. Detailliertere Angaben und Erklärungen stehen im Produktkatalog Kraft oder in den jeweiligen Datenblättern auf www.kistler.com zur Verfügung.

Digitale Laborverstärker: LabAmp

Neueste Generation universeller Labor-Ladungsverstärker; mit integrierter Datenerfassung für dynamische oder quasistatische Messungen; Netzwerkfähig mit Web-Interface.

Abb. 14: LabAmp Typ 5165A und Typ 5167A

Analoge Laborverstärker: Typ 5015A, 5018A und 5080A

Die bewährten analogen Ladungsverstärker für Labor und Forschung. Mit sehr breitem Messbereich und hoher Flexibilität (Type 5080A).

Abb. 15: Labor-Ladungsverstärker Typ 5015A und Typ 5080A

Industrielle Verstärker

Größen- und Funktionsoptimierte Verstärker für den Dauereinsatz im Alltag. Busfähig und teilweise mit weiteren Funktionen. (Bewertung von Kraftverläufen, etc.)

Abb. 16: Industrieverstärker Typ 5073A und 5074A (v.l.) Rechts der maXYmos BL Typ 5867B...

Mitgeliefertes Zubehör	Тур
Spezialschmierfett	1063
 Vorspannschraube f ür Vorspannung 	9422A01
zur Druckkraftmessung, inkl. Zentrier-	
klammer (nur bei Sensoren	9422A51
Typ 9001C 9051C)	

Zubehör (optional)

-	
 Vorspannelement f ür Vorspannung 	9420A01
zur Messung von Zug- und Druckkräften	
inkl. Einbauzubehör	9420A71
• Vorspannelemente für Big Force Sensoren	9455S, 9456S
Typ 9081C und 9091C	

Einbauzubehör für Piezo Kraftsensoren (optional)

•	Druckverteilring	95x5
•	Kugelscheibe	95x3
•	Isolierscheibe	95x7
•	Druckkappe	95x9

Kabel (optional)

 Anschluss- und Verlängerungskabel gemäss Datenblatt der Kabel für Kraftund Drehmomentsensoren

Bestellschlüssel		
	Typ 9	0 🕍 C
		Î
Piezo-Kraftsensor		
Bereich 0 7,5 kN	01	
Bereich 0 15 kN	11	
Bereich 0 35 kN	21	
Bereich 0 60 kN	31	
Bereich 0 90 kN	41	
Bereich 0 120 kN	51	
Bereich 0 200 kN	61	
Bereich 0 400 kN	71	
Bereich 0 650 kN	81	
Bereich 0 1 200 kN	91	