

Sensor für den oberen Hals

Typ M55596A...

Sechsachsig

Der Sensor vom Typ M55596A... wird zur Messung der Kräfte und Momente des oberen Halses (Upper Neck) des Thor-M (TH) Crashtestdummys eingesetzt.

- Sechsachsig (Fx, Fy, Fz, Mx, My, Mz)
- UPS-Modul verfügbar
- Geringe Linearitätsschwankungen und Hysterese
- Kistler Systemverkabelung
- Polaritäten nach SAE J211/1

Typ M55596A... mit Aufsatz

Beschreibung

Der Sensor besteht aus Elementen, auf die Kräfte und Momente übertragen werden. Der mit Dehnungsmessstreifen applizierte mechanische Verformungskörper dient zur mechanisch-elektrischen Umformung. Die Wirkungsweise des Sensors lässt sich im Prinzip auf das Verhalten einer Biegefeder zurückführen. Die zu messende Kraft bzw. das zu messende Moment erzeugt mechanische Dehnungen und Stauchungen im Messkörper. Um Linearitätsschwankungen zu vermeiden, werden die Verformungswege konstruktiv klein gehalten (hohe Steifigkeit).

So wird ein proportionales Verhalten erzielt. In einer Wheatstonschen Brückenschaltung werden die kraft- oder momentproportionalen Widerstandsänderungen erfasst. Der Sensor ist mit UPS-Modul, das in einem externen Zusatzgehäuse im Kabel oder im Steckverbinder untergebracht ist, erhältlich. Kundenspezifische Kabellängen und Steckverbinder mit spezieller Kundenbelegung sind optional möglich.

Technische Daten

achsbezogen		F _x	F _y	Fz	M _x	My	Mz
Messbereich	kN	8,9	8,9	13,3			
	N⋅m				284	284	284
Brückenausgangsspannung (typ.)	mV/V	2,0	2,0	1,1	1,6	1,6	1,6
Empfindlichkeit (typ.)	μV/V/kN	223	223	85			
	μV/V/N·m				5,7	5,7	7,9
Brückenwiderstand	Ω	350	350	700	350	350	350
Grenzlast, statisch	%	150	150	150	150	150	150

allgemein

angemen			
Versorgungsspannung ¹⁾	VDC	2,5 15	
Isolationswiderstand ²⁾	GΩ	>10	
Betriebstemperaturbereich	°C	-20 80	
Lagertemperaturbereich	°C	-30 90	
Linearitätsfehler (typ.)	%	<1	
Hysterese (typ.)	%	<1	
Kanalübersprechen	%	<5	
Brückennullsignal (typ. / max.)	mV/V	0,01 / 0,03	
Gewicht (ohne Kabel)	Gramm	462	

Alle Werte gemessen bei 25 °C, mit einer Sensorversorgung von 10 V, sonst sind andere Werte angegeben.

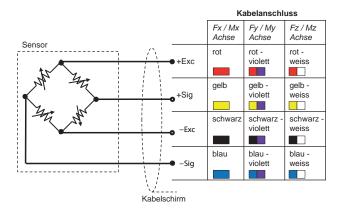
- 1) Mit UPS-Modul 9 ... 12 VDC
- ²⁾ Alle Adern gegen Sensorgehäuse, gemessen mit 500 VDC

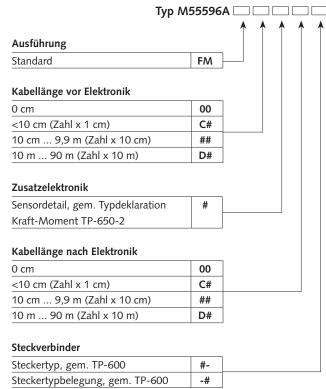
measure. analyze. innovate.

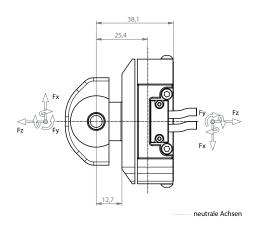
Anwendung

Der Sensor wird direkt an die dafür vorgesehene Messstelle im Dummy eingebaut und liefert somit wichtige Erkenntnisse über die Belastungen auf den menschlichen Körper, die während eines Crashtests auftreten.

Bild 1: Dummyanwendung, Messstellen Upper Neck




Bild 2: Kabelanschluss


Mitgeliefertes Zubehör

Keines

Zubehör (optional) Zus. Etikett mit Seriennummer, steckerseitig UPS-Modul Zus. Etikett mit ID-Nummer am Sensor Zus. Shunt Typ Nr. M015KABID auf Anfrage M015KABID auf Anfrage

Bestellschlüssel

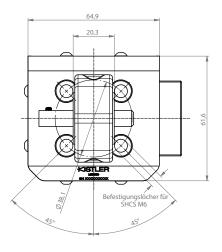


Bild 3: Abmessungen in mm

Seite 2/2