4-component Dynamometer (RCD)

### Rotating – for measuring cutting forces in heavy machining

The rotating 4-component dynamometer (RCD) Type 9171A... permits the measurement of the forces and the on a rotating tool. It is mounted in the machine spindle instead of a common tool holder. Energy and measured values are transmitted on a non-contact basis, preventing wear.

- Cutting force measurement on the rotating tool
- 4-component measurement:  $F_{x,}\ F_{y},\ F_{z}$  as well as  $M_{z}$
- up to max. 12 000 min<sup>-1</sup>
- Forces measurable up to 30 kN
- Non-contact data transmission
- Internal cutting fluid supply possible
- Available for conventional machine spindle interfaces
- Several tool adapters available
- High run-out accuracy and balancing quality
- Complete measuring system

#### Description

The complete measuring system comprises a rotor, stator, connecting cable and signal conditioner. The spindle type on the machine tool determines which rotor version is required. The spindle adapter is also exchangeable. The same applies to the tool adapters. The piezoelectric 4-component sensor, four charge amplifiers and the digital transmission electronics are integrated into the rotor. It measures the radial forces  $F_x$  and  $F_y$ , axial force  $F_z$  as well as torque  $M_z$ .

Digitized measuring signals to the stator, the range selection of the charge amplifiers and the power supply are transmitted without contact. The stator is fastened to the machine tool with a gap of a few millimeters.

The signal conditioner is the interface to the following data acquisition system. It is responsible for the power supply and the control of the system. Settings of measuring ranges as well as settings at the low-pass filter are performed manually at the signal conditioner or via the serial interface. The measuring signals are available as analog  $\pm 10$  Volt signal. Either the Dy-noWare software from Kistler, or compatible data acquisition software, can be used to record the data.

#### Application

A rotating dynamometer is used to measure the three orthogonal forces  $F_x$ ,  $F_y$  and  $F_z$  as well as torque  $M_z$  during cutting production processes, especially during milling and drilling. A rotating dynamometer enables:

- Recording of the mechanical load during the cutting process
- Analysis of the wear process
- Optimization of cutting parameters
- Calculation of material-specific constants (e.g. the specific cutting force)
- Optimization of tool geometry and coating
- Verification of cutting simulations

The forces and the torque are measured close to the cutting edge of the tool. This allows the active force vector on single flute tools to be measured directly. Due to the newly developed piezoelectric sensor located in the rotor, it is possible to record highly dynamic signals.

Page 1/8

© 2015 ... 2019 Kistler Group, Eulachstraße 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, info@kistler.com, www.kistler.com. Kistler Group products are protected by various intellectual property rights. For more details visit www.kistler.com



Type 9171A...

# 9171A\_003-155d-08.19

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for the consequential damages arising from the application of Kistler products is excluded.



#### measure. analyze. innovate.

#### Advantages of a rotating Dynamometer

Employing a rotating dynamometer as a measuring tool offers a number of advantages to the user:

- The torque to be applied during the machining process is measured directly. This permits an accurate assessment of the condition of the tool, such as its state of wear
- The rotor of a rotating dynamometer rotates with the tool and allows the direct quantification of the mechanical load of the tool
- Thanks to the independence of workpiece mass, size and shape, the cutting force and torque of the cutting process can be measured on complex and cost-intensive components, e.g. structural parts of aircraft or Blisks (Blade Integrated Disc)

#### Technical data

#### Rotor Type 9171Axxx0

| Speed, max.                     |                                 | min <sup>-1</sup> | 12 000              |
|---------------------------------|---------------------------------|-------------------|---------------------|
| Measuring range 1, nominal      | F <sub>x</sub> , F <sub>y</sub> | N                 | -20 000 20 000      |
|                                 | Fz                              | N                 | -30 000 30 000      |
|                                 | Mz                              | N∙m               | -1 000 1 000        |
| Calibration range               |                                 |                   | in acc. with page 6 |
| Sensitivity range 1             | F <sub>x</sub> , F <sub>y</sub> | mV/N              | ≈0,48               |
|                                 | Fz                              | mV/N              | ≈0,3                |
|                                 | Mz                              | mV/N∙m            | ≈8,75               |
| Sensitivity range 2             | $F_x$ , $F_y$                   | mV/N              | ≈1,2                |
|                                 | Fz                              | mV/N              | ≈1,2                |
|                                 | Mz                              | mV/N∙m            | ≈24                 |
| Sensitivity range 3             | $F_x$ , $F_y$                   | mV/N              | ≈4,8                |
|                                 | Fz                              | mV/N              | ≈4,8                |
|                                 | Mz                              | mV/N∙m            | ≈96                 |
| Linearity                       |                                 | %FSO              | ≤±1,0               |
| Hysteresis                      |                                 | %FSO              | ≤1,0                |
| Crosstalk                       | $F_x < -> F_y$                  | %FSO              | ≤±2,0               |
|                                 | $F_{x,y} \rightarrow F_z$       | %FSO              | ≤±3,0               |
|                                 | $F_z \rightarrow F_{x,y}$       | %FSO              | ≤±1,0               |
|                                 | $F_z \rightarrow M_z$           | mN∙m/N            | ≤±1                 |
|                                 | $M_z \rightarrow F_z$           | N/N∙m             | ≤±1                 |
| Natural frequency <sup>1)</sup> | f <sub>0, Fx,y</sub>            | Hz                | ≈1 100              |
|                                 | f <sub>0, Fz</sub>              | Hz                | ≈7 600              |
| Natural frequency 2)            | f <sub>0, Fx,y</sub>            | Hz                | ≈900                |
|                                 | f <sub>0, Fz</sub>              | Hz                | ≈5 800              |
| Low-pass (anti-aliasing)        |                                 | kHz               | 3,0                 |
| Low-pass filter type            |                                 |                   | 6 pole,             |
|                                 |                                 |                   | Butterworth         |
| Sampling rate per channel       |                                 | kHz               | 22,2                |
| Resolution                      |                                 | bit               | 12                  |
| Operating temperature ran       | ge                              | °C                | 0 60                |
| Degree of protection (IEC 6     | 50529)                          |                   | IP67                |

| Internal cutting fluid pressure, max. | bar | 70   |
|---------------------------------------|-----|------|
| Balancing class                       | G   | ≤2,5 |
| Weight (rotor only, without spindle   | kg  | ≈3,3 |
| adapter, without tool adapter)        |     |      |
| Weight Type 9171A151x (with attached  | kg  | ≈7,2 |
| spindle adapter HSK-A100              |     |      |
| and tool adapter ER32) measured       |     |      |
| without tool and clamping nut         |     |      |

 $^{1)}\;$  Applies to Type 9171A150x (RCD with spindle adapter HSK-A100, without tool adapter)

 $^{2)}$  Applies to Type 9171A151x (RCD with spindle adapter HSK-A100 and tool adapter ER32) measured with collet, clamping nut, tool  $m_{tool}$  = 126 g

#### Signal conditioner Type 5238B...

| • •                              |     |             |
|----------------------------------|-----|-------------|
| Number of channels               |     | 4           |
| Number of ranges per channel     |     | 3           |
| Low-pass (adjustable)            |     |             |
| Cut-off frequency 1              | kHz | 0,1         |
| Cut-off frequency 2              | kHz | 0,3         |
| Cut-off frequency 3              | kHz | 1,0         |
| Low-pass filter type             |     | 6 pole,     |
|                                  |     | Butterworth |
| Signal output FSO                | V   | ±10         |
| Connector signal output          |     | 4xBNC neg.  |
|                                  |     | D-Sub neg.  |
|                                  |     | 15 pin      |
| Interface (for remote control)   |     | RS-232C     |
| Power supply VAC                 | V   | 100 240     |
| Tolerance                        | %   | ±10         |
| Mains frequency                  | Hz  | 50 60       |
| Operating temperature range      | °C  | 0 60        |
| Degree of protection (IEC 60529) |     | IP30        |
| Dimensions WxHxD                 | mm  | 248x253x146 |
| Weight (signal conditioner only) | kg  | 3,4         |
|                                  |     |             |

Page 2/8

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for the consequential damages arising from the application of Kistler products is excluded.

## **KISTLER**

#### measure. analyze. innovate.

#### Signals of a rotating Dynamometer (RCD)

The Type 9171A... rotating dynamometer is based on a piezoelectric 4-component sensor and it represents the core element of the rotor design. Through the spindle interface, the rotor is installed directly by the machine spindle and therefore follows the rotation. This means that the coordinate system of the RCD also rotates around the vertical Z-axis. Due to the rotating coordinate system of the RCD, it is possible to directly assess the mechanical loads of the tool cutting edge.



Fig. 1: Polarplot milling with double-edged tool for finishing



Here are some examples of measurement signals acquired and displayed with the optional Kistler DynoWare Type 2825A software:



Fig. 2: Polarplot milling with four-edged tool in half section



Fig. 4: Measurement data during drilling

Page 3/8

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for the consequential damages arising from the application of Kistler products is excluded.

© 2015 ... 2019 Kistler Group, Eulachstraße 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, info@kistler.com, www.kistler.com. Kistler Group products are protected by various intellectual property rights. For more details visit www.kistler.com

4-component Dynamometer (RCD) - Rotating - for measuring large cutting forces in heavy machining, Type 9171A...

#### measure. analyze. innovate.

#### Modularity

The spindle adapter as well as the tool adapter for Type 9171A... are removable to provide the highest possible flexibility to the user. For example, by simply exchanging the spindle adapter it is possible to use the dynamometer on several machine tools with different spindle interfaces. The detailed description of the process can be found in the instruction manual.

Rotor Type 9171A...

#### Mounting the RCD Type 9171A...

Like a conventional tool, the rotor of a rotating dynamometer is pulled into the machine spindle through the spindle adapter. The user is responsible for mounting the stator onto the machine structure or the stationary part of the machine spindle. There is a detailed description of this procedure in the instruction manual.

#### Handling the RCD Type 9171A... during operation

To prevent a collision between the stator and the stator holder, we recommend inserting the RCD Type 9171A... into the machine spindle manually.



Fig. 5: Scheme of the measuring chain

9171A\_003-155d-08.19

#### Typical measuring chain with DAQ system Type 5697A1

|                              |                  | CSTL29             | ∰                               |             |                        |
|------------------------------|------------------|--------------------|---------------------------------|-------------|------------------------|
| Dynamometer<br>(+ Stator)    | Connection cable | Signal Conditioner | Connection cable                | DAQ system  | Notebook               |
| Type 9171A<br>(+ Type 5236B) | Туре 1500А95     | Туре 5238В         | Type 1700A111A2<br>Type 1200A27 | Туре 5697А1 | side) with<br>DynoWare |

Page 4/8

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for the consequential damages arising from the application of Kistler products is excluded.





9171A\_003-155d-08.19

Page 5/8

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for the consequential damages arising from the application of Kistler products is excluded.



#### Calibration ranges of the different RCD Types

| Туре      | Spindle Adapter    |                                 |     | Calibration range 1 | Calibration range 2 | Calibration range 3 |
|-----------|--------------------|---------------------------------|-----|---------------------|---------------------|---------------------|
| 9171A100x | -                  | F <sub>x</sub> , F <sub>y</sub> | N   | 18 000              | 7 500               | 1 900               |
|           |                    | Fz                              | N   | 28 000              | 7 500               | 1 900               |
|           |                    | Mz                              | N∙m | 1 000               | 380                 | 95                  |
| 9171A13xx | HSK-A63            | F <sub>x</sub> , F <sub>y</sub> | N   | 3 000               | 1 500               | 300                 |
|           |                    | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           |                    | Mz                              | N∙m | 1 000               | 380                 | 95                  |
| 9171A14xx | HSK-A80            | F <sub>x</sub> , F <sub>y</sub> | N   | 5 000               | 2 500               | 500                 |
|           |                    | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           |                    | Mz                              | N∙m | 1 000               | 380                 | 95                  |
| 9171A15xx | HSK-A100           | F <sub>x</sub> , F <sub>y</sub> | N   | 7 500               | 4 000               | 1 000               |
|           |                    | Fz                              | N   | 28 000              | 7 000               | 1,500               |
|           |                    | Mz                              | N⋅m | 1 000               | 380                 | 95                  |
| 9171A22xx | DIN ISO            | F <sub>x</sub> , F <sub>y</sub> | N   | 3 000               | 1 500               | 300                 |
|           | 7388-1 - AD40      | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           | (DIN 69871-AD40)   | Mz                              | N∙m | 1 000               | 380                 | 95                  |
| 9171A23xx | DIN ISO            | F <sub>x</sub> , F <sub>y</sub> | N   | 7 000               | 3 500               | 500                 |
|           | 7388-1 - AD50      | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           | (DIN 69871-AD50)   | Mz                              | N⋅m | 1 000               | 380                 | 95                  |
| 9171A25xx | JIS B 6339-2 JD 40 | F <sub>x</sub> , F <sub>y</sub> | N   | 3 000               | 1 500               | 300                 |
|           | (MAS 403 BT 40)    | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           |                    | Mz                              | N∙m | 1 000               | 380                 | 95                  |
| 9171A26xx | JIS B 6339-2 JD 50 | F <sub>x</sub> , F <sub>y</sub> | N   | 7 000               | 3 500               | 500                 |
|           | (MAS 403 BT 50)    | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           |                    | Mz                              | N∙m | 1 000               | 380                 | 95                  |
| 9171A28xx | ANSI / ASME        | F <sub>x</sub> , F <sub>y</sub> | N   | 3 000               | 1 500               | 300                 |
|           | B5.50-40 (CAT 40)  | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           |                    | Mz                              | N∙m | 1 000               | 380                 | 95                  |
| 9171A29xx | ANSI / ASME        | F <sub>x</sub> , F <sub>y</sub> | N   | 7 000               | 3 500               | 500                 |
|           | B5.50-50 (CAT 50)  | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           |                    | Mz                              | N⋅m | 1 000               | 380                 | 95                  |
| 9171A32xx | Capto C6 *         | F <sub>x</sub> , F <sub>y</sub> | N   | 3 000               | 1 500               | 300                 |
|           |                    | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           |                    | Mz                              | N∙m | 1 000               | 380                 | 95                  |
| 9171A33xx | Capto C8 *         | F <sub>x</sub> , F <sub>y</sub> | N   | 5 000               | 2 500               | 500                 |
|           |                    | Fz                              | N   | 28 000              | 7 000               | 1 500               |
|           |                    | Mz                              | N·m | 1 000               | 380                 | 95                  |

\* Not possible to use together with center bolt clamping

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for the consequential damages arising from the application of Kistler products is excluded.

© 2015 ... 2019 Kistler Group, Eulachstraße 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, info@kistler.com, www.kistler.com. Kistler Group products are protected by various intellectual property rights. For more details visit www.kistler.com

Page 6/8



#### measure. analyze. innovate.

#### Components of a measuring chain

- Rotor
- Stator
- Connecting cable (I = 10 m)
- Signal conditioner for rack installation
- Signal conditioner for desktop case
- **Type** 9171Axxx0 5236B 1500A95 5238B1 5238B2

Туре 9171А 🗌 🗌 🗌

#### Ordering example: 9171A3232

Tested RCD Type 9171A... measuring system consisting of:

- Rotor Type 9171A100
- Mounted spindle adapter Capto C6 (removable)
- Mounted powRgrip collet chuck secuRgrip PG32-SG (removable)
- Stator Type 5236B
- Connection cable Type 1500A95
- Signal conditioner Type 5238B2

#### Ordering key

Rotating 4-component Cutting force dynamometer RCD

| 13<br>14<br>15<br>22<br>23 |
|----------------------------|
| 14<br>15<br>22<br>23       |
| 15<br>22<br>23             |
| 22                         |
| 22<br>23                   |
| 23                         |
| 23                         |
|                            |
| 25                         |
| 26                         |
| 28                         |
| 29                         |
| 32                         |
| 33                         |
|                            |

| Flange adapter (w/o tool adapter)     | 0 |   |
|---------------------------------------|---|---|
| Collet chuck ER 32                    | 1 | 1 |
| (DIN 6499 – B32)                      |   |   |
| Collet chuck ER 40                    | 2 | 1 |
| (DIN 6499 – B40)                      |   |   |
| powRgrip collet chuck                 | 3 | 1 |
| secuRgrip PG 32-SG                    |   |   |
| TENDO hydraulic expansion chuck       | 4 | 1 |
| MEGA collet chuck 20N,                | 5 | 1 |
| New Baby Chuck                        |   |   |
|                                       |   | - |
| Measuring system                      |   |   |
| Rotor only                            | 0 |   |
| Complete measuring system with rotor, | 1 |   |
| stator, connecting cable and signal   |   |   |
| conditioner (rack mounted unit)       |   |   |
| Complete measuring system with rotor, | 2 | 1 |
| stator, connecting cable and signal   |   |   |
| conditioner (desktop case)            |   |   |

#### Spindle adapter (available separately)

| Spindle Adapter                    | Art. No. |
|------------------------------------|----------|
| HSK-A63                            | 55127703 |
| HSK-A80                            | 55127778 |
| HSK-A100                           | 55127779 |
| DIN ISO 7388-1 - AD40              | 55127805 |
| (DIN 69871-AD40)                   |          |
| DIN ISO 7388-1 - AD50              | 55127806 |
| (DIN 69871-AD50)                   |          |
| JIS B 6339-2 JD 40 (MAS 403 BT 40) | 55127808 |
| JIS B 6339-2 JD 50 (MAS 403 BT 50) | 55127809 |
| ANSI / ASME B5.50-40 (CAT 40)      | 55127812 |
| ANSI / ASME B5.50-50 (CAT 50)      | 55127817 |
| Capto C6 *                         | 55127820 |
| Capto C8 *                         | 55127821 |

\* Not possible to use together with center bolt clamping

#### Included accessories

- Coolant tube
- O-ring seal for coolant tube
- Balancing ring
- Screws
- Stop bolt

#### Page 7/8

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for the consequential damages arising from the application of Kistler products is excluded.



#### measure. analyze. innovate.

#### Tool adapter (available separately)

| Tool Adapter                    | Art. No. |
|---------------------------------|----------|
| Collet chuck ER32               | 55127219 |
| (DIN 6499-B32)                  |          |
| Collet chuck ER40               | 55127224 |
| (DIN 6499-B40)                  |          |
| powRgrip collet chuck           | 55125318 |
| secuRgrip PG32-SG               |          |
| TENDO hydraulic expansion chuck | 55171559 |
| MEGA collet chuck 20N,          | 55187242 |
| New Baby Chuck                  |          |

#### Included accessories for tool adapter

- Clamping nut
- Hook wrench (only ER collet chuck)
- Ratchet spanner/handle bar (only powRgrip collet chuck secuRgrip)
- Balancing rings
- Screws
- Stop bolts

#### Ordering key

Collet DIN 6499-B32-UP

Type 9169A 🗌

| Tool Diameter d |    |
|-----------------|----|
| 1 2 mm          | 02 |
| 2 3 mm          | 03 |
| 3 4 mm          | 04 |
| 4 5 mm          | 05 |
| 5 6 mm          | 06 |
| 6 7 mm          | 07 |
| 7 8 mm          | 08 |
| 8 9 mm          | 09 |
| 9 10 mm         | 10 |
| 10 11 mm        | 11 |
| 11 12 mm        | 12 |
| 12 13 mm        | 13 |
| 13 14 mm        | 14 |
| 14 15 mm        | 15 |
| 15 16 mm        | 16 |
| 16 17 mm        | 17 |
| 17 18 mm        | 18 |
| 18 19 mm        | 19 |
| 19 20 mm        | 20 |



Fig. 2: Collet Type 9169A...

TENDO is a registered trademark of Schunk GmbH.

MEGA New Baby Chuck is a registered trademark of BIG Daishowa Group.

Capto is a registered trademark of the Sandvik Group.

powRgrip and secuRgrip are registered trademarks of Rego-Fix AG.

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for the consequential damages arising from the application of Kistler products is excluded.

© 2015 ... 2019 Kistler Group, Eulachstraße 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, info@kistler.com, www.kistler.com. Kistler Group products are protected by various intellectual property rights. For more details visit www.kistler.com

Page 8/8