

Kistler LabAmp

Туре 5165А

Charge amplifier and data acquisition unit for dynamic measurements

This universal laboratory charge amplifier can be used wherever dynamic signals¹⁾ of mechanical quantities are measured with piezoelectric sensors, Piezotron sensors (IEPE) or sensors with voltage output. Piezoelectric sensors produce an electric charge which varies in direct proportion with the load acting on the sensor. The amplifier converts this charge directly into digital values or a proportional output voltage.

- 1 or 4 channel amplifier for piezoelectric sensors (charge), Piezotron sensors (IEPE) and voltage
- Integrated 24-bit data acquisition with up to 200 kSps per channel
- Continuous digital signal processing at minimal latency
- Fully flexible low-pass, high-pass and notch filter adjustment¹⁾
- Low-noise design
- TEDS (IEEE 1541.4) for Piezotron sensors
- 1 or 4 analog outputs with fully flexible 2-point scaling and internal routing
- Status indication per channel via LED
- Virtual channels for real-time calculations using one or more sensor channels²⁾
- Configuration and control in a standard web-browser or via KiStudio Lab Software Package Type 2910B (including post-processing software jBEAM)
- Virtual instrument driver for LabVIEW
- Two Ethernet interfaces with included switch functionality
- PTP synchronization option for data acquisition with multiple devices ²⁾
- Integrated function generator ²⁾

Description

The Kistler LabAmp Type 5165A is not only an outstanding low-noise charge amplifier for dynamic signals but also a powerful data acquisition device delivering the digitized measurement values directly to a host computer for further analysis. It is configured and operated in a web-interface, conveniently accessible by a standard web-browser or via KiStudio Lab Software Package Type 2910B (including post-processing software jBEAM).

Thanks to advanced signal processing technology, the Kistler LabAmp Type 5165A offers impressive flexibility. The frequencies of the high-pass, low-pass and notch filters can be directly entered as numeric values in Hertz. The input signals can be flexibly routed to the analog outputs.

The graphical user interface not only offers a simple and intuitive way to configure the device but also displays different measurement values (e.g. live value, peak value, root mean square). The virtual channel functionality ²⁾ allows real-time summation of different input signals. Furthermore, the browser-based data download allows the acquired data to be processed in an analysis software. For more advanced tasks or direct analysis, the amplifier can be integrated directly into LabVIEW thanks to the provided Virtual Instruments Driver.

For higher channel counts, the optional synchronization feature (PTP) allows acquiring data from multiple Type 5165A devices. Kistler LabAmp Type 5166A and Type 5167A amplifiers can be synchronized with the Type 5165A as well which allows for example the combined acquisition of dynamic IEPE signals and quasi-static signals from piezoelectric sensors. No additional cables are required.

²⁾ This functionality requires an extra license, see ordering key on the last page.

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for consequential damages arising from the application of Kistler products is excluded.

¹⁾ dynamic PE/IEPE signals from 0.1 Hz (time constant ≈1.6 s)/voltage signals from 0 Hz; not suitable for quasi-static charge measurements

measure. analyze. innovate.

Technical data

Connections

Number of channels	
Туре 5165А1	1
Туре 5165А4	4
Input connector type	BNC neg.
Analog output connector type	BNC neg.
Ethernet interface	2xRJ45

Charge input

Measuring ranges	рС	±100 1,000,000
Frequency range (-3dB)	Hz	0.1 100,000

Input noise (typ.)

1 Hz 100 kHz		
100 pC	pC _{rms}	0.006
1,000 pC	pC _{rms}	0.008
10,000 pC	pC _{rms}	0.048
100,000 pC	pC _{rms}	0.67
1,000,000 pC	pC _{rms}	4.6
1 Hz 10 kHz		
100 pC	pC _{rms}	0.006
1,000 pC	pC _{rms}	0.007
10,000 pC	pC _{rms}	0.03
100,000 pC	pC _{rms}	0.35
1,000,000 pC	pC _{rms}	2.8
Maximum input voltage	V	±30
Measurement uncertainty		
Measuring range <100 pC	%	<1
Measuring range ≥100 pC	%	<0.5
Crosstalk between channels	dB	≤–80
Sensor impedance	MΩ	>10

Piezotron input

Gain		1/10
Sensor supply voltage	V	22
Power supply	mA	4/10
Frequency range (-3dB)	Hz	0.1 100,000
Innut noise (tun 0.0 shunt a	1 (mm + 1)	-

Input noise (typ., 0 Ω shunt at input)

1 Hz 10	00 kHz
---------	--------

Gain 10	μV _{rms}	6
Gain 1	μV _{rms}	45

1 Hz 10 kHz		
Gain 10	μV _{rms}	3.5
Gain 1	μV _{rms}	28
Maximum input voltage	V	±30
Measurement uncertainty		
Gain 10	%	<1
Gain 1	%	<0.5
Crosstalk between channels	dB	≤–80

Voltage input

<u> </u>		
Input type		single-ended
Measuring range	V	±1 10
Input impedance	MΩ	10
Frequency range (–3dB)	Hz	0 100,000
Input noise (typ.)		
1 Hz 100 kHz		
Measuring range 1 V	μV _{rms}	6
Measuring range 10 V	μV _{rms}	45
1 Hz 10 kHz		

1 Hz 10 kHz		
Measuring range 1 V	μV _{rms}	3.5
Measuring range 10 V	μV _{rms}	28
Max. input voltage	V	±30
Measurement uncertainty		
Measuring range <1 V	%	<1
Measuring range ≥1 V	%	<0.5
Crosstalk between channels	dB	≤-80

Voltage output

8 1		
Nominal output range	V	±10
Output impedance	Ω	10
Max. common mode voltage between input and output ground	V	±14
Output noise (all ranges)		
1 Hz 100 kHz, typ.	mV _{rms}	0.046
1 Hz 10 kHz, typ.	mV _{rms}	0.041
Frequency range (–3dB)	Hz	0 100,000
Group delay (input to output, filters off)	μs	≤12
Zero error	mV	<±2
DAC resolution (analog out)	Bit	16

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for consequential damages arising from the application of Kistler products is excluded.

measure. analyze. innovate.

Technical data (continuation)

Data acquisition

ADC resolution	Bit	24
Internal ADC sampling rate	kSps	625
Acquisition data rate per chan- nel	kSps	≤200
(adjustable)		

Note: For the data acquisition with \geq 25 kSps an anti-aliasing filter is automatically set with a cut-off frequency of 0.3 ... 0.45 x selected output update rate.

Digital high-pass filter

Order		1.
Cutoff-frequency (–3dB) selection in 0.1 Hz steps	Hz	≥0.1 10,000
Tolerance (typ.)	%	<1

Digital low-pass filter

Filter type		Bessel or Butter-
		worth
Order		2./4.
Cutoff-frequency (–3dB) selection in 1 Hz steps	Hz	≥10
Tolerance (typ.)	%	<1

Digital notch filter

Center frequency	Hz	≥10
selection in 1 Hz steps		
Tolerance (typ.)	%	<1
Q factor		0.9 1,000

Application

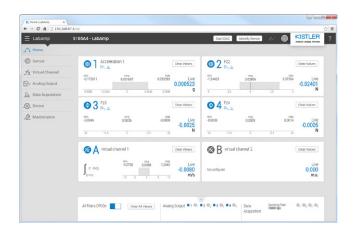
The instrument has been designed for use in research, development and the laboratory. The Kistler LabAmp Type 5165A is the perfect choice wherever dynamic signals need to be measured precisely and with high resolution. Acceleration and vibration measurements, pulsating pressure applications or force measurements of fast machining procedures are just a few examples where the Kistler LabAmp Type 5165A can demonstrate his strengths.

Virtual channels 1)

Number of channels	
Type 5165A1	1
Type 5165A4	4

Ethernet interface

Data rate	MBit	100


Power supply requirements

Supply voltage range	VDC	18 30
Power consumption	W	<15
Socket for barrel jack plug (IEC 60130-10 Type A)	mm	5.5x2.5x9.5
Power supply requirements		 galvanic isolation PE and GND not connected

General data

Operating temperature range	°C	0 60
Storage temperature range	°C	-10 70
Rel. humidity, not condensing	%	≤90
Degree of protection (EN 60529)		IP20
Outer dimensions incl. feet and connectors (WxHxD)	mm	≈218x50x223
Weight	kg	1.2

¹⁾ This functionality requires an extra license, see ordering key on the last page

Page 3/6

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for consequential damages arising from the application of Kistler products is excluded.

Kistler LabAmp – Charge amplifier and data acquisition unit for dynamic measurements, Type 5165A

KISTLER

measure. analyze. innovate.

Operation via Web-Interface

All settings are configured in a standard web-browser through the graphical user interface. Simply connect to the Kistler LabAmp Type 5165A by its network name and start working. A simple data acquisition is also implemented, offering a data download controlled by a start/stop button. In addition, an API is available to perform automated measuring tasks PC-based.

Built in function generator feature

The function generator can be used to generate a specific waveform that can be routed the analog outputs. In addition to the three built-in waveforms (square, triangle, sine), the device can also generate arbitrary waveforms. This feature is subject to a specific license. Licenses can be purchased from Kistler and activated under the menu item Maintenance - Software Licensing.

LabAmp firmware version 2.2.0 or higher is required.

The following attributes can be set:

5165A_003-146e-12.23

Hz	0.1 6 250
V	0 10
V	-10 10
%	0 100
	0 10
	V

Operation via KiStudio Lab Software Package Type 2910B The intuitive KiStudio Lab software enables the user to setup the LabAmp Type 5165A and acquire data in no time. If multiple LabAmp devices (Type 5165A, Type 5166A and Type 5167A, also in combination with KiDAQ systems) need to be synchronized, KiStudio Lab allows the configuration of the devices and acquisition of the synchronized data in a convenient and centralized way.

😑 KiStudio Lab	my Project	Configuration Mode		
Project Board	B. Projectionces	wennet Sing Stat Damit Overview	ing 🔤 🛱 Destiliered Defection 🔤 Signal Storage	Settings status. Without
Infl Cashboard	Show only active chapterin	General Connections		
C Recordings	V C Mexicarment Dooks Lablerp-1115A-Denie2	Channel	Action	
ADMINISTRATION	Channel 1		New	PI Senior
Project Browser	Channel 2		Channel Type	Analog logal
D. System Settings	Charred 3		Common Alba	veral alter
	Darrel 4		Input Configuration	
			Sensor Type	Owys *
			Connection Diagram	ē0
			Physical Quentity	face
			Sensitivity / Scaling	40 pCN *
			Moscoring Range	500 N
			High pass	
			Active	(INT)

Page 4/6

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for consequential damages arising from the application of Kistler products is excluded.

Kistler LabAmp – Charge amplifier and data acquisition unit for dynamic measurements, Type 5165A

Block Diagram

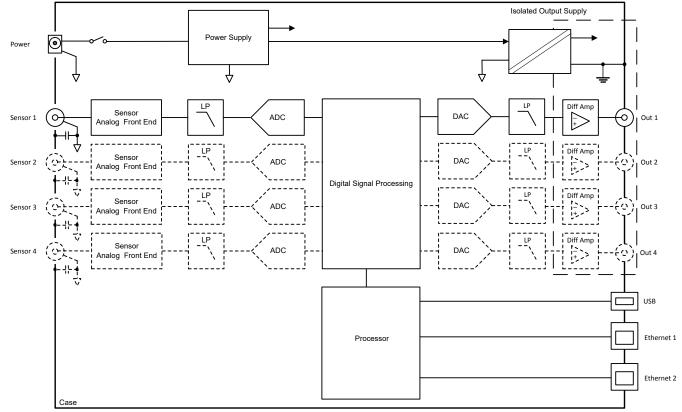


Fig. 1: Block diagram of the Kistler LabAmp Type 5165A

Dimensions

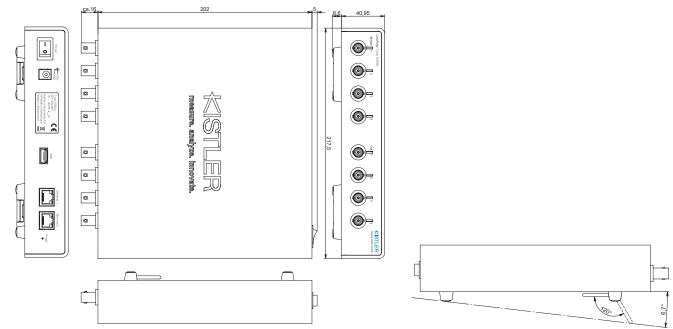


Fig. 2: Dimensions of Kistler LabAmp Type 5165A4

Page 5/6

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for consequential damages arising from the application of Kistler products is excluded.

measure. analyze. innovate.

Included AccessoriesCalibration sheetQuick-start guide	Type/Mat. No. – –
Optional Accessories	Type/Mat. No.
 Power supply* 24 V 	5779A2
incl. country-specific plug	
 19" rack mounting tablet 	5748A1
 Dummy panel for empty 19" position 	5748A2
• KiStudio Lab Software Package (including post processing software jBEAM)	2910B
 DynoWare software 	2825A-03-2
Full license with HASP license key	
• jBEAM Lab	2897A
SW for Measurement Data Analysis	

* Available as combined kit together with the amplifier

Ordering key		
Туре 5	5165A	
LabAmp		
Single-channel	1	
4 channels	4	
SW order for existing device	-	
Kit with amplifier, 24 V power supply, 2 m Ethernet cable	к	
Amplifier only or SW order for existing device	-	
Hardware & Software (new device with potential SW features)	н	
SW order for existing device	S	
No synchronization for data acquisition	0]
PTP device synchronization	1	-
No virtual channel(s)	0	
Virtual channel(s)	1	
No function generator	0	
Function generator license	1	

Configuration examples:

5165A4KH100:	4-Channel device, incl. power supply
	& Ethernet cable, incl. PTP device
	synchronization
5165A1KH111:	1-Channel device, incl. power supply
	& Ethernet cable, incl. PTP device
	synchronization, virtual channels &
	function generator
5165AS100:	PTP synchronization license for an existing
	device
5165AS010:	Virtual Channels license for an existing
	device
5165AS001:	Function Generator license for an existing
	device

LabVIEW is a registered trade mark of National Instruments Corporation.

The information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes without advance notice. Liability for consequential damages arising from the application of Kistler products is excluded.

© 2014 ... 2023 Kistler Group, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, info@kistler.com, www.kistler.com. Kistler Group products are protected by various intellectual property rights. For more details visit www.kistler.com

Page 6/6