

maXYmos NC

XY-Monitor für die Überwachung und Ansteuerung von NC-Fügemodulen

Das maXYmos NC steuert, überwacht, bewertet und dokumentiert XY-Verläufe von Füge- und Einpressvorgängen in Verbindung mit NC-Fügemodulen und dazugehörigem Servoverstärker IndraDrive.

- 128 unabhängige Programme mit je bis zu 10 Bewertungselemente durch unterschiedlichsten Typen mit Online- und Offline-Auswertungen
- Integrierte Ablaufsteuerung (Sequenz) für höchste Flexibilität
- Echtzeitverhalten durch SERCOS III Ansteuerung des Servoverstärkers
- Onboard Feldbus-Schnittstellen zur Anlagensteuerung (PROFIBUS, PROFINET, EtherCAT, EtherNet/IP)
- Integrierter Kurvenspeicher für bis zu 500 Kurven
- Statistik und Protokollierung der Messergebnisse (Q-DAS®, CSV, PDF, XML, IPM 5.0, QDA9)
- Selbstüberwachung und Diagnose sowie Visualisierung und Remotesteuerung (VNC)

Anhand der Form von Messkurven kann die Qualität eines einzelnen Fertigungsschrittes, einer Baugruppe oder des gesamten Produktes überwacht und in Echtzeit gesteuert werden.

Beschreibung

Das maXYmos NC Typ 5847A... übernimmt neben der Auswertung von Kurvenverläufen und deren Dokumentation die Ansteuerung des Servoverstärkers IndraDrive, der das NC-Fügemodul steuert. Die Kommunikation findet in Echtzeit über SERCOS III statt und garantiert hohe Wiederholgenauigkeiten und höchste Performance der Prozesssteuerung.

Eine einfache Inbetriebnahme kann über den PC oder über dem optionalen Touchscreen erfolgen. Als Schnittstelle zur Anlagensteuerung stehen verschieden Feldbusschnittstellen zur Verfügung. Mit der integrieren Ablaufsteuerung (Sequenz) können einfach, schnell und flexibel auch komplexe Prozesse abgebildet werden.

Der auf bis zu acht XY-Kanalpaare kaskadierbare Monitor wendet sich vor allem an den anspruchsvollen Anwender, bei dem hinsichtlich Applikationsbewältigung, Bedienkomfort und Flexibilität keine Wünsche offen bleiben dürfen. Mit Hilfe einer Vielzahl leistungsfähiger Bewertungselemente lassen sich auch sehr komplexe XY-Verlaufe überwachen und steuern.

Wichtige Features pro MEM:

- Kurvenerfassung nach Y=f(X), Y=f(X,t), Y=f(t), X=f(t)
- Kurvenbewertung mit SPEED, TIME, UNI-BOX, HYSTERE-SE-Y, HYSTERESE-X, KNICK, HÜLLKURVE, LINE-X, LINE-Y, NO-PASS, GRADIENT-Y, GRADIENT-X, TUNNELBOX-X, TUNNELBOX-Y, BREAK, CALC, AVERAGE, GET-REF, INTE-GRAL, DIG-IN, DELTA-Y
- Dynamische Referenzierung der Bewertungselemente in X- und Y-Richtung
- Kurze Bewertungszeit
- Ethernet TCP/IP für Messdaten, Fernwartung und Kanalkaskadierung
- Dig.-IO (24 V) frei konfigurierbar für Applikationsspezifische Ansteuerung
- Kanal X: Servo, Inkremental, SSI, Potentiometer TTL, +10 V IVDT
- Kanal Y: DMS, ±10 V oder piezoelektrische Sensoren
- Aussagekräftige NIO-Ursachendiagnose, Prozesswert-Trendverläufe usw.
- Prozesswertetabelle mit frei wählbarem Inhalt
- Ausgewählte Prozesswerte zum Kurvengraphen
- Warn- und Alarmmeldungen z.B. NIO-in-Folge
- Zugriffsschutz mit frei wählbaren Rechten

Seite 1/11

Technische Daten

Messkanäle Mess- und Bewertungsmodul (MEM)

Anzahl		1 X-Kanal, 1 Y-Kanal
Abtastrate X/Y max.	kHz	10
Auflösung pro (analog) Kanal	bit	24
Genauigkeitsklasse	%	0,3
Grenzfrequenz pro Kanal	Hz	5 000
Tiefpassfilter pro Kanal (in Stufen)	Hz	0,1 2 000

Sensoren Kanal-X

Sensortyp 1		Potentiometer
Linearitätsfehler	%FS	0,05
Bahnwiderstand	kΩ	1 5
Speisespannung	V	4,4 ±0,2
Anschlusstechnik	3-Leiter	
Schleiferstrom	μΑ	<1,0
Sensortyp 2		Prozesssignal ±10 V
Signaleingang	V	±10
Linearitätsfehler	%FS	0,05
Speisung für Transmitter	VDC	24 ±5 %
	mA	500

Sensortyp 3		Inkremental TTL
Signaleingang	Sinus/Cos, RS-422C (A+B)	
Referenzmarke		ja
Zähltiefe	bit	32
Max. Eingangsfrequenz	MHz	10 (RS-422C)
	MHz	1,2 (Sin/Cos)
Sensorspeisung	VDC	5 ± 5 %
	mA	300

Sensortyp 4		Induktiv
Prinzip	L۱	/DT, Halb-, Vollbrücke
Sensorspeisung	Veff	1,8 ± 5 %
	kHz	5,2 ± 0,5 %
Linearitätsfehler	%FS	0,1
Frequenzbereich (–3 dB)	kHz	0 1

Sensortyp 5		SSI
Signaleingang		RS-422C
Clockfrequenz max.	MHz	1

Sensoren Kanal-Y

	Piezo
Anzahl	4
pC	±100 ±1 000
pC	±1 000 ±10 000
pC	±10 000 ±100 000
pC	±100 000 ±1 000 000
	pC pC pC

Bereichswahl		automatisch
Drift	pC/s	0,05
Linearitätsfehler	%FS	0,05
TKE	ppm/K	<±100
Frequenzbereich (–3 dB)	kHz	0 5
Sensortyp 2		DMS
Messbereich	mV/V	0 ±5
Speisespannung	VDC	5 ± 5 %
Anschlusstechnik		4-Leiter, 6-Leiter
Brückenwiderstand	Ω	≥300
Linearitätsfehler	%FS	0,05
Frequenzbereich (–3 dB)	kHz	0 5
Sensortyp 3		Prozesssignal ±10 V
Signalausgang	V	±10
Linearitätsfehler	%FS	0,05
Speisung für Transmitter	VDC	24 ±5 %
	mA	500

Monitorausgänge

Anzahl	1 X-Kanal, 1 Y-Kanal	
Nominalwert	V	±10
Linearitätsfehler	%FS	0,05

Zyklussteuerung

Start – Stopp	Sequenz/Feldbus/
	Schwelle-X/Schwelle-Y/Zeit

Messfunktionen

Kurvenspeicher

Aktuelle Kurve	XY-Paare	max. 8 000
Historische Kurven		die letzten 500

Bewertungselemente (EOs)

EO-Typen SPEED, TIME, UNI-BOX, HYSTERESE-Y,
HYSTERESE-X, HÜLLKURVE, LINE-X, LINE-Y, NO-PASS,
KNICK, GRADIENT-Y, GRADIENT-X, TUNNELBOX-X,

TUNNELBOX-Y, BREAK, CALC, AVERAGE, GET-REF, INTEGRAL, DIG-IN, DELTA-Y

Bezugspunkte Absolut-X,

Dynamisch: Blockpunkt-X,

Dynamisch: X bei Trigger-Y,

Referenzierung in X- und in Y-Richtung möglich

Editierung Remote, via Touchpanel

Seite 2/11

measure. analyze. innovate.

Datenexport			
Format C	Q-DAS®, XML, CSV, PDF, IPM 5.0, QDA9		
Ziel		USB, Server	
Medium		USB, Ethernet	
Visualisierung		über VNC, oder DIM	
Interfaces			
Ethernet	TCP/IP 100 Ba	se TX mit 2 Port Switch	
USB	2	x USB Host, 1x Device	
BUS	PR	OFIBUS DP, PROFINET,	
	EtherCAT, EtherNet/IP,		
		2 Port Switch	
Servoanbindung	Feldbusmaster SERCOS III		
Dig-In/Out			
Norm		DIN EN61131	
Pegel Zustand "0"	V	0 5	
Pegel Zustand "1"	V	10 30	
Anzahl Eingänge		16	
Eingangsstrom max.	mA	5 (bei 24 V)	
Anzahl Ausgänge		16	
Ausgangsstrom max. (pro Ka	nal) mA	500 (bei 24 V)	

Uı	mge	bung	
_			

Gebrauchstemperatur	°C	0 45
Lagertemperatur	°C	0 50
IP Schutzart (EN 60529)		
 Stecker und Kabel nach unten 	IP	53
 Normschienenversion 	IP	20

Displaymodul (DIM)

Grösse	Zoll	10,4
Farbe		ja
Touchscreen		ja
Auflösung	Pixel	800x600 (SVGA)
Technologie		TFT-LCD
Hintergrundbeleuchtung		LED
Versorgunsspannung (vom MEM)	VDC	24
IP Schutzart (EN 60529)		
- Front (im eingebauten Zustand)	IP	65
– Rückseite	IP	53
Betriebstemperaturbereich	°C	0 45

Messprogramme

Ausgangsstrom max. (in Summe)

Anzahl		128
Umschaltung per		Menü/BUS
Umschaltzeit	ms	<50

mΑ

Schaltsignale

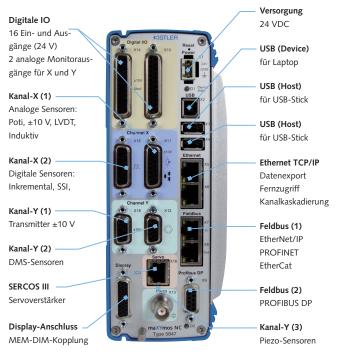
2
X oder Y (wählbar)
Schwelle X erreicht
Schwelle Y erreicht
DigOut oder Feldbus
freilaufend oder Latch
nein

Echtzeitreaktionen

Schaltsignale NO-PASS	ms	<1
BREAK, KNICK,		
TUNNELBOX-X. TUNNELBOX-Y		

Versorgung

Spannung	VDC	24 (18 30)
Leistungsaufnahme (typisch)	VA	45
Leistungsaufnahme (max.)	VA	80
Anschluss Schraub-/Steckklemme,	1	Stück im Lieferumfang


Wago, Best.-Nr. 734-103/037-000 Gehäuse dazu: Best.-Nr. 734-603

Mess- und Bewertungsmodul (MEM)

Interfaces

1500 (bei 24 V)

Das mit einem XY-Kanalpaar und sämtlichen Daten- und Steuerinterfaces ausgestattete Modul bildet das Herzstück des XY-Monitors.

Seite 3/11

measure. analyze. innovate.

Das Systemkonzept

Grundkomponenten

Das maXYmos NC besteht aus zwei Grundkomponenten, dem völlig autark arbeitenden Mess- und Bewertungsmodul (MEM), es unterstützt jeweils ein XY-Kanalpaar und das Displaymodul (DIM).

MEM mit Displaymodul

MEM und DIM können entweder getrennt voneinander installiert werden, sie sind dann lediglich über das optional erhältliche Verbindungskabel Typ 1200A161A2,5/5 verbunden.

.... oder auch als kompakte Einheit. Dazu wird das MEM in den rückseitigen Slot des DIM geschoben und damit gleichzeitig mechanisch und elektrisch verbunden:

Die Informationen entsprechen dem aktuellen Wissensstand. Kistler behält sich technische Änderungen vor. Die Haftung für Folgeschäden aus der Anwendung von Kistler-Produkten ist ausgeschlossen.

Funktionsprinzip mit DIM Cable Extender

DIM Cable Extender zur aktiven Kabelverlängerung zwischen maXYmos MEM und Display DIM mit bis zu 100 m Reichweite. Der DIM Cable Extender Typ 1200A163 wird an der rückwärtigen Fläche des Displays maXYmos DIM Typ 5877AZ000 eingeschoben und mit zwei Schrauben fixiert.

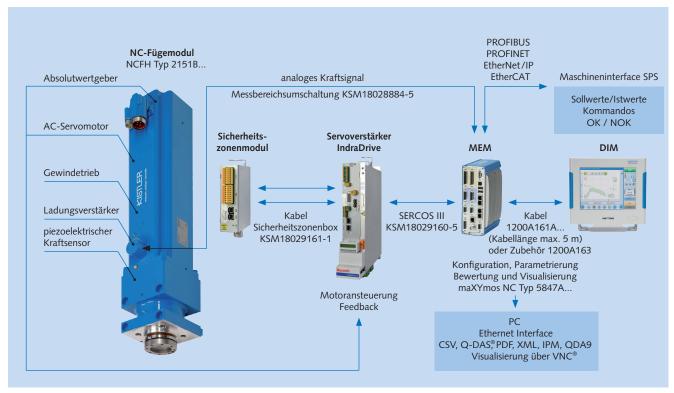
Der DIM Cable Extender ist im rückwärtigen Teil des Displays eingeschoben. Die Speisung des DIM Cable Extenders erfolgt mit 24 V (Display wird dann vom DIM Cable Extender versorgt). Das DIM Cable Extender wird über ein Ethernetkabel an eines oder an mehrere maXYmos verbunden.

MEM als BlackBox-Modul

Das Mess- und Bewertungsmodul (MEM) kann, da völlig autark arbeitend, auch ohne DIM betrieben werden. Setup und Prozessvisualisierung werden in diesem Fall über das auf den PC übertragbare Userinterface (GUI) erledigt. Der Zugriff erfolgt dabei via VNC über die Ethernetschnittstelle oder USB.

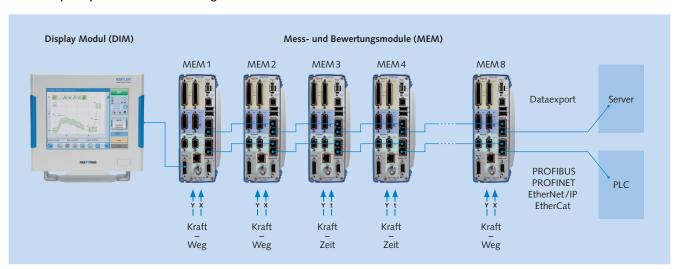
Erweiterbarkeit auf bis zu acht XY-Kanalpaare

Dazu werden die MEMs via Patchkabel auf der Ethernet-Schnittstelle verbunden. Externe Switches sind nicht erforderlich. Das Ethernet wird einfach über die In-Out-Buchsen durch die MEMs geschleift.



Seite 4/11

©2014 ... 2016, Kistler Gruppe, Eulachstrasse 22, 8408 Winterthur, Schweiz Tel. +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com Kistler ist eine eingetragene Marke der Kistler Holding AG.



Funktionsprinzip mit maXYmos NC Typ 5847A...

Funktionsprinzip eines NC-Fügesystems mit NC-Fügemodul NCFH Typ 2151B... und maXYmos NC Typ 5847A...

Funktionsprinzip Mehrkanalanwendung

Vernetzung/Multiview von maXYmos NC

measure. analyze. innovate.

Sequenzer Mode

Das maXYmos NC steuert das NC-Fügemodul über den Servoverstärker durch die integrierte Ablaufsteuerung (Sequenz) an. Für jedes Programm besteht die Möglichkeit, einen unabhängigen Ablauf zu definieren. Der Ablauf kann anhand der nachfolgenden Elementen frei konfiguriert werden.

Die Messung und Auswertung erfolgt in der Main-Routine. In den 3 Sub-Routinen lassen sich weitere Sequenzen definieren und unabhängig von der Main-Routine ausführen.

Insgesamt können bis zu 255 Elemente pro Programm platziert werden.

Element Bewegung: dieses Element dient zum Verfahren des NC-Fügemoduls z.B. auf absolute/relative Position oder Kraft. Zusätzlich kann Kraftregelung, Stauchungskompensation oder das Stoppen auf externes Signal bzw. die Reaktion auf ein Knickpunktevent konfiguriert werden.

Element Warten: beim Erreichen dieses Elements wird die Sequenz angehalten und muss zur Fortsetzung des Ablaufs von der SPS quittiert werden.

Element Marke: dieses Element dient zur Interaktion mit der SPS. Hierbei wird die Labelnummer beim aktivieren des Elements Label an die SPS übertragen.

Element Messung Start/Stopp: dieses Element startet und stoppt die Messung. Nach Messen Stopp erfolgt die Auswertung anhand der parametrierten Auswerteelemente.

Element Timer: dieses Element verzögert das Ausführen des nachfolgenden Elements um die konfigurierte Zeit. Verwendung z.B. als Setzzeit unter Kraft.

Element Dialog: dieses Element dient zur Interaktion mit dem Bediener. Hiermit können z.B. nützliche Informationen dem Bediener übermittelt werden. Der Dialog muss vom Bediener an der Visualisierung quittiert werden.

Element Berechnung: mit diesem Element können aus vorhandenen Parametern z.B. Ist-Werte von Auswerteelementen, Folgeparameter für die weitere Verwendung berechnet werden.

Element Eingang: beim Aktivieren dieses Elements wird auf das parametrierte digitale Eingangssignal gewartet und anschliessend die Sequenz fortgesetzt.

Element Ausgang: beim Aktivieren dieses Elements wird der entsprechend konfigurierte Ausgang am Gerät gesetzt.

Element Grundstellung: dieses Element ist einmal in der Sequenz vorhanden und definiert die Grundstellung. Diese wird beim Aktivieren des Elements oder über Feldbus mit der vordefinierten Geschwindigkeit angefahren.

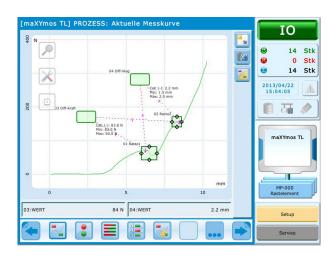
Element Sequenz Ende: dieses Element zeigt, dass die Sequenz beendet wurde. Nachfolgende Elemente werden nicht mehr ausgeführt.

Element IF/ELSE: Dieses Element lässt eine bedingte Sprungoperation zu, d.h. eine Verzweigung in dem Ablaufprogramm, je nach Abfragezustand bzw. Ergebnis.

Element Piezo Operate: Dieses Element dient zum variablen Messstart/Messstopp des integrierten Ladungsverstärkers in der Sequenz.

Bewertungsverfahren

Zur Bewertung des Kurvenverlaufs steht eine Vielzahl von Bewertungselementen (EOs wie Evaluation Objects) zur Auswahl: Beispiele:


Die Messkurve darf die obere und	Typ HÜLLKURVE / ENVELOPE	Linie darf nicht gekreuzt werden.	Typ NO-PASS	
untere Linie des Hüllkurvenbandes nicht verletzen. Schnell einlernbares Bewertungselement mit Trendnach- führung.	IO NIO	Andernfalls NIO und Echtzeitsignal "NO-PASS".	IO NIO	
Linie muss einmal gekreuzt werden. Überwacht wird ein Wert-X am Kreu- zungspunkt.	Typ LINE-X IO NIO	Linie muss einmal in eine bestimmte Richtung gekreuzt werden. Überwacht wird ein Wert-Y am Kreuzungspunkt.	Typ LINE-Y IO NIO NIO X X	
Ein- und Austritt wie vorgegeben. Keine Verletzung "geschlossener" Seiten erlaubt. Jede Seite als Ein- bzw. Austritt definierbar.	Typ UNI-BOX NIO	Bewertet den Mittelwert aller Y-Werte im Boxbereich	Typ MITTELWERT / AVERAGE IO NIO TY X	
Ein- und Austritt wie vorgegeben. Eine Verletzung der geschlossenen Seiten liefert ein Echtzeitsignal und stoppt die Sequenz.	Typ TUNNELBOX-X IO NIO Y 10 Y 10 X X	Ein- und Austritt wie vorgegeben. Eine Verletzung der geschlossenen Seiten liefert ein Echtzeitsignal und stoppt die Sequenz.	Typ TUNNELBOX-Y IO NIO NIO X X	
Box detektiert signifikante Kurven- merkmale und deren XY-Koordinaten im Erwartungsbereich. Diese sind als Referenzpunkte für andere EOs oder als Input für das CALC-Element verwendbar.	Typ GET-REF Y X1 X2 Y1 X2 Y1 X2	Bewertungskriterium ist die Zeit zwischen dem Eintritts- und Austritts- punkt in einer speziellen Box.	Typ TIME IO NIO Y X X	
Bewertungskriterium ist die Geschwindigkeit zwischen dem Eintrittsund Austrittspunkt in einer speziellen Box.	Typ SPEED IO NIO Y X X	Element bezieht zwei vorgebbare Prozesswerte und führt damit Rechen- operationen durch, z.B. die Berech- nung der X-Differenz zwischen zwei Ripplen und bewertet diese.	Typ BERECHNUNG / CALC IO NIO Y X2-X1=IO X X1 X2 X1 X2	
Eine definierte Gradientenänderung wird innerhalb der Box erwartet und kann als Weiterschaltbedingung der Sequenz verwendet werden.	Typ KNICK / INFLEXION IO NIO Y X	Liefert NIO und Onlinesignal bei plötzlicher Gradientenänderung inner- halb eines Erwartungsbereichs (Box) z.B. bei Werkzeugbruch und stoppt die Sequenz.	Typ BRUCH / BREAK IO NIO Y X	

I			
Bewertet die X-Hysterese zwischen einer vor- und einer zurücklaufenden	Typ HYSTERESE-X		
Kurve an einer waagerechten Linie.	NIO NIO X		
Bewertet die Y-Hysterese zwischen einer vor- und einer zurücklaufenden	Typ HYSTERESE-Y		
Kurve an einer senkrechten Linie.	NIO NIO X		
Bei Kurvendurchlauf innerhalb des definierten Bereiches wird geprüft ob	Typ DIG-IN		
ein digitales Signal anliegt.	NIO NIO		
Bei Kurvendurchlauf innerhalb des	Typ DELTA-Y		
definierten Bereiches wird der maxi- male Kraftversatz zwischen vor- und rücklaufender Kurve ermittelt und geprüft.	Y; IO Y; NIO X		
Bewertet den Gradienten dX/dY zwi-	Typ GRADIENT-X		
schen zwei waagerechten Linien.	IO NIO		
Bewertet den Gradienten dX/dY zwi-	Typ GRADIENT-Y		
schen zwei senkrechten Linien.	IO NIO		
Die Fläche unter der Kurve wird	Typ INTEGRAL		
ermittelt und bewertet.	IO NIO X		

Beispiel Produktprüfung: Distanzkontrolle zwischen zwei Rastpunkten einer Klinke. Die beiden GET-REF Boxen liefern die Koordinaten der Rastpunkte an die CALC-Elemente. Diese berechnen und bewerten die Distanzen in X- und in Y-Richtung.

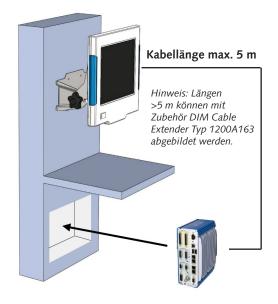
Gehäusekonzept und Installationsvarianten

Das universelle Gehäusekonzept ermöglicht es, mit wenigen Handgriffen verschiedene Anbauvarianten zu erzeugen. Der Maschinendesigner hat somit die Möglichkeit, jederzeit auf eine andere Anbauvariante umzustellen.

Tisch- und Wandmontage

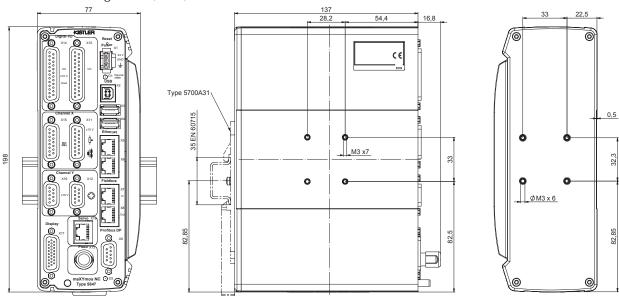
Mit wenigen Handgriffen wird aus der Tisch- eine Wandversion.

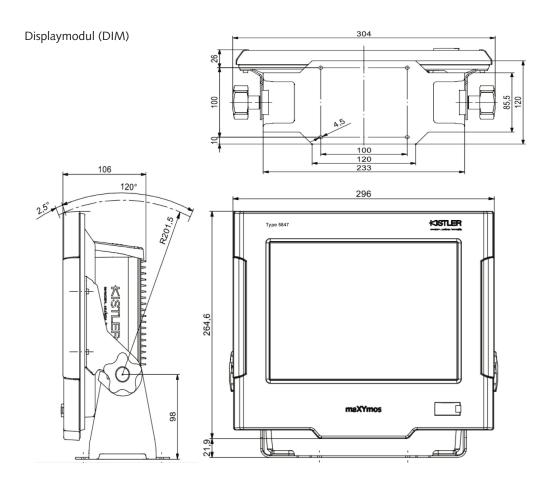
Panelmontage - Einbau in die Frontplatte


Nachdem Haltebügel und hinterer Rahmen entfernt sind, wird das Display durch den Frontplattenausschnitt gesteckt. Anschliessend wird der Rahmen wieder aufgeschraubt. Bei Bedarf kann nun auch das Messmodul (MEM) in den Slot des Displaymoduls geschoben werden.

Hutschienenmontage

Mittels optionalem Befestigungsclip kann das Messmodul (MEM) auf einer Hutschiene befestigt werden. Damit ist es möglich, den empfindlichen Anschlussbereich des MEMs geschützt im Schaltschrank, das besser geschütze Displaymodul (DIM) jedoch im sichtbaren Bereich unterzubringen.


Vorteile: Zum Display führt lediglich noch ein Monitorkabel. Die Schutzart im Monitorbereich wird gleichzeitig auf IP65 erhöht.



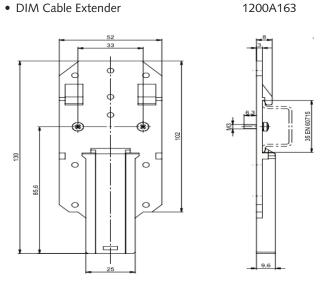
Abmessungen

Mess- und Bewertungsmodul (MEM)

Minimalabstand: Der Minimalabstand von MEM zu MEM sollte mindestens ≥10 mm betragen.

Seite 10/11

Zubehör (optional)	Тур	Bestellschlüssel	
 Displaymodul (DIM) 	5877AZ000	XY-Monitor maXYmos NC	Typ 5847A
 Steckersatz maXYmos TL für 	5877AZ010		<u>_</u>
Sensoren, digital I/O und Versorgung			
 Verbindungskabel zwischen MEM und 	1200A161A2,5	Mess- und Bewertungsmodul (MEM)	0
DIM, Länge 2,5 m			
 Verbindungskabel zwischen MEM und 	1200A161A5		


1200A49A3

1200A49

5700A31

5867AZ012

Typ 2830A1

Mitgeliefertes Zubehör für Typ 5847A0 Typ/Mat. Nr.

• Windows-Software maXYmos PC (Basic) 2830A1

Zubehör (optional)	Тур
• maXYmos Kraft-Transmitterkabel,	KSM18028884-5
Länge 5 m • maXYmos DMS-Kraftkabel,	N3/W10U20004-3
Länge 5 m	KSM18028883-5
SERCOS III Verbindungskabel,	
Länge 5 m	KSM18029160-5
 Sicherheitszonenbox Kabel, 	
(2 Kabeln benötigt). Länge 1 m	KSM18029161-1

Windows®-Software maXYmos PC (Plus) Typ 2830B2

(im Lieferumfang des Mess- und Bewertungsmoduls Typ 5847A

• Sicherung der Geräteeinstellung als Datei (Backup) • Rückladen der Geräteeinstellung in Gerät (Restore)

Wie Basis-Version jedoch zusätzlich

Windows®-Software maXYmos PC (Basic)

• Firmwareupdates organisieren

enthalten)

DIM, Länge 5 m

schrankmontage

• Ethernet-Verbindungskabel

zwischen MEMs, Länge 0,5 m • Ethernet-Verbindungskabel

zwischen MEMs, Länge 5 m • Netzteil 220 VAC/24 VDC

• Hutschienenclip für die MEM-Schalt-

- Protokollexplorer öffnet und interpretiert exportierte Messprotokolle
- Generierung einer Excel®-Statistik Datei mit ausgesuchten
- Cursorvermessung, Bundledarstellung der Kurven usw.
- Fertige Y(X)-Kurven auch als Y(t) oder X(t) darstellen
- PDF-Druckfunktion für Messprotokolle

Windows® und Microsoft Excel® sind eingetragene Warenzeichen von Microsoft Corporation

Seite 11/11