

Messnabe RoaDyn S5MT

Typ 9289A263

für Dauerfestigkeits- und Reifencharakteristik-Messungen auf Reifenprüfständen (Lkw und Bus)

Die 5(6)-Komponenten-Messnabe RoaDyn S5MT ist das ideale Instrument zum Messen von Reifencharakteristiken auf Nutzfahrzeug-Reifenprüfständen. Die Messnabe misst die auftretenden Längs-, Quer- und Aufstandskräfte F_x , F_y und F_z und die dazugehörigen Momente M_x , M_y und M_z , die an der Reifenaufstandsfläche bzw. am Reifenlatsch angreifen.

- Präzise Reifencharakteristikmessungen mit Nutzfahrzeugreifen
- Ideal für Felgendurchmesser >16 Zoll, kleinere Felgen mit entsprechendem Adapter möglich
- DMS-Messdosentechnologie ermöglicht statische als auch dynamische Reifenmessungen
- Statisches Messen der Aufstandskraft F_z ermöglicht die Steuerung des Prüfstandes (dadurch keine zusätzlichen Kraftsensoren notwendig)
- Modulares Design
- · Hohe Steifigkeit
- Werkskalibriert
- Vorbereitet für Ölschmierung
- Analog, CAN, EtherCAT- und Ethernet Ausgang mit der entsprechenden Elektronik verfügbar

Beschreibung

Die RoaDyn S5MT Messnabe ist ein robustes und hochpräzises Messgerät, instrumentiert mit vier ovalen DMS-Messdosen, die zwischen Grund- und Deckplatte montiert sind. Die Messnabe wird stationär eingesetzt, d. h. Grundplatte, Deckplatte und Messdosen werden nicht drehend am Reifenprüfstand befestigt. In der Messnabe ist eine sich drehende Achse (Welle) mit vordefinierten Nabenlochbildern integriert, auf der die zu prüfenden Reifen/Felgenkombinationen montiert werden. Dieser Aufbau gewährleistet einen optimalen Kraftfluss bei minimalem Übersprechen zwischen den einzelnen Komponenten, als auch eine hohe Eigenfrequenz des gesamten Messsystems. Das Wellenende ist auf der Rückseite der Messnabe herausgeführt und ist für die Aufnahme einer Antriebs- bzw. Bremsvorrichtung vorbereitet. Die Einlass und Auslasskanäle für den Ölkreislauf befinden sich auf der Rückseite der Messnabe und sind zum Schmieren und Kühlen der Lager vorgesehen, damit auch bei großen Lasten und erhöhten Drehzahlen konstante Wärmebedingungen erzielt werden können.

Die Signale der Messnabe werden via Elektronik der kundenseitigen Datenerfassung zur Verfügung gestellt.

Anwendung

Typische Haupteinsatzgebiete sind Messungen von Reifencharakteristiken sowohl an Reifenprüfständen im Labor, als auch auf mobilen Prüfwagen in den Bereichen Lebensdauer, Ungleichförmigkeiten, Vibrationen, Bremseigenschaften, Haftung usw.

Technische Daten

Allgemeine Technische Daten

Messbereich ¹⁾	F _x	kN	-100 100
	F _y	kN	-50 50
	Fz	kN	0 100
	M _x	kN∙m	-40 40
	$M_y^{2)}$	kN⋅m	-30 30
	Mz	kN∙m	-15 15
Kalibrierbereich ³⁾	F _x	kN	0 100
	Fy	kN	0 50
	Fz	kN	0 100
Linearität	F _x , F _z , F _y	%FSO	≤±0,5
Übersprechen ⁴⁾	$F_y \rightarrow F_x$, F_z	%	≤±1,0
	$F_x \leftarrow > F_z$	%	≤±1,0
	F_x , $F_z \rightarrow F_y$	%	≤±1,0
Eigenfrequenz	f _n (x,y, z)	Hz	≈700
Höchstdrehzahl		min ⁻¹	1.000
Betriebstemperaturbereich		°C	+5 70
Schutzart gemäß DIN40050			IP65

Seite 1/4

Technische Daten (Fortsetzung)

_	 ο-	

dione		
Durchmesser	mm	480
Länge	mm	630
Gewicht	kg	245
Standardlochkreise		
10 Stk. M16x22	Ø	205
12 Stk. M16x22	Ø	150
5 Stk. M14x1,5x35	Ø	112

1) Es wird angenommen dass die Extremwerte nicht gleichzeitig auftreten

Anforderung an Ölschmierung

Zuleitung, 1x		"	5/8
Öldruck, Zuleitung	р	bar	≤0,5
Durchfluss	Ÿ	l/min	1 2
Rückleitung, 1x		"	1
Öldruck, Rückleitung	р	bar	druckfrei
Ölspezifikation	Тур	ISO VG	68
Kinematische Viskosität (@40°)	n	mm²/s	65 75
Pumpentyp 5)			nicht pulsierend

⁴⁾ In Kombination mit Signalnachbearbeitung in kundenseitiger Datenerfassung und von Kistler bereitgestelltem Algorithmus

Abmessungen

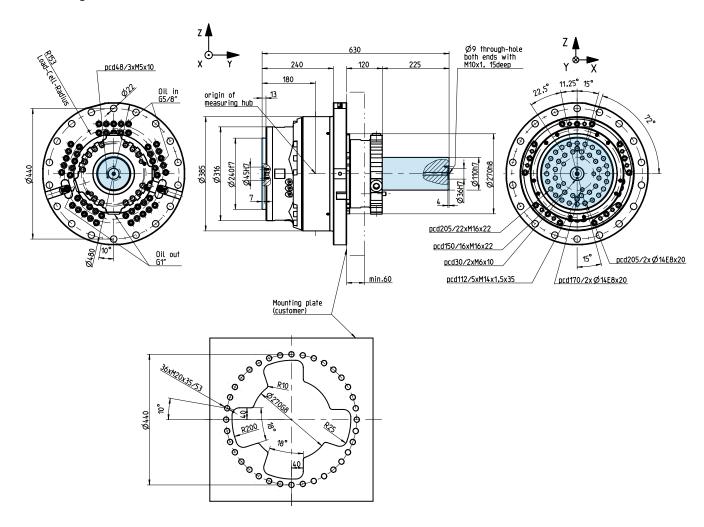


Bild 1: Übersichtszeichnung RoaDyn S5MT; rotierende Teile sind blau hinterlegt

 $^{^{2)}}$ Nur bei einer installierten Bremse am Prüfstand ist M_y messbar, ansonsten ist $M_y = 0$

³⁾ Standard Kraftangriffspunkt bei Reifenradius R = 500 mm und Einpresstiefe e = 0 mm

⁵⁾ z. B. Zahnradpumpe

Messkette

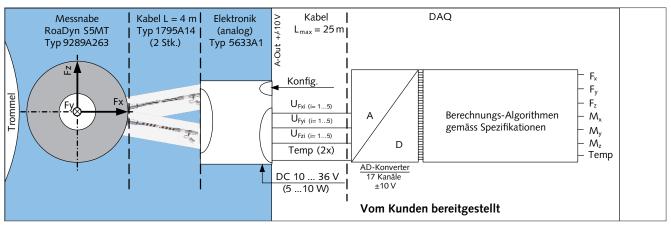


Bild 2: Analoge Messkette RoaDyn S5MT

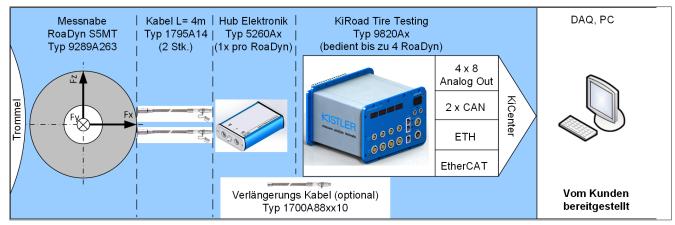


Bild 3: Digitale Messkette RoaDyn S5MT

Montage

Die RoaDyn S5MT Messnabe wird mit achtzehn M20 Schrauben auf Standardlochkreis ø440 mm am Reifenprüfstand befestigt. Die Felgen/Reifenkombinationen werden entweder direkt auf dem Wellenflansch mit vordefinierten Lochkreisdurchmessern oder mit einem Adapterflansch montiert. Die Felgenzentrierung erfolgt mittels kundenspezifischer Zentrierpassung (nicht im Lieferumfang enthalten).

Mitgeliefertes Zubehör	Typ/Art. Nr.	Bestellbezeichnung	Тур
• 18 Stk. Zylinderschraube mit Innen-	6.120.287	 Messnabe RoaDyn S5MT 	9289A263
sechskant M20x80/53		für Dauerfestigkeits- und Reifencharak-	
 18 Stk. Unterlagscheibe D37/M20x8 	6.220.074	teristikmessungen auf Reifenprüfständen	
• 1 Stk. Ringschraube	6.170.008	(Lkw und Bus)	
 2 Stk. Gewindestift Innensechskant 	6.160.087		
M20x50		Andere Kistler Produkte für diese Applikation	
1 Stk. Hebewinkel 292x192x60 mm	3.710.229	 RoaDyn S220 Messnabe (20 kN) 	9289A103
• 2 Stk. Zylinderschraube mit Innensechs-	6.120.225	zur Rollwiderstandsmessung von	
kant M16x30		Pkw-Reifen auf Reifenprüfständen	
• 1 Stk. Zylinderschraube mit Innensechs-	6.120.217	 RoaDyn S260 Messnabe (60 kN) 	9289A113
kant M12x30		zur Rollwiderstandsmessung von	
		Lkw-Reifen auf Reifenprüfständen	
Zubehör (optional)	Typ/Art. Nr.	 RoaDyn P530 Messnabe (30 kN) 	9295B
 Anschlusskabel Messnabe L = 4 m 	1795A14	zur Bestimmung der Reifencharakteristik	
mit geradem Stecker (2 Stk. benötigt)		auf Reifenprüfständen (Pkw)	
 Anschlusskabel Messnabe L = 4 m 	1795A24	 RoaDyn S5ST Messnabe (60 kN) 	9289A253
mit Winkelstecker (2 Stk. benötigt)		zur Messung der Reifencharakteristik	
Analoge Elektronik für Reifenprüfstände	5633A1	auf Reifenprüfständen (Nutzfahrzeuge)	
 Digitale Elektronik KiRoad Tire Testing 	9820A	 RoaDyn S530 Messnabe 	9289A013
Triaxialer Beschleunigungssensor ±5 g	8762A5	für Lebensdauermessungen von Pkw-Reifen	
		auf Reifenprüfständen	

vom Kunden bereitzustellen

- Hydraulisches Ölpumpenschmiersystem (stoßfrei)
- DAQ