

Press Force Sensor

0 ... 50 N bis 0 ... 20 kN

Der massearme Miniatur-Druckkraftsensor eignet sich hervorragend zum Messen dynamischer aber auch quasistatischer Kräfte. Fertig vorgespannt und mit praxisgerechten Adaptionsmöglichkeiten versehen ist er sofort einsatzbereit. Es gibt den Sensor in zwei unterschiedlichen Baugrößen, die sich, außer bei den Abmessungen, vor allem im Messbereich unterscheiden.

- Druckkräfte von 0 ... 50 N bis 0 ... 20 kN mit 2 Baugrößen
- Extrem weiter Messbereich mit einem Sensor
- Kalibrierschein für 3 Messbereiche: 100 %, 10 %, 1 %
- SCS-Kalibrierung optional
- Einfache Adaption über beidseitige axiale Gewindebohrungen
- Einfache Integration in Schubstangen bzw. Pressenstempel
- Geringe Maße der krafteinleitenden Elemente. Deshalb kaum Verfälschung dynamischer Kraftverläufe
- Bis zu 100-fache Überlastsicherheit in den jeweils unteren Bereichen

Beschreibung

Die Press Force Sensoren basieren auf dem piezoelektrischen Messprinzip. Die auf den Quarz wirkende Kraft erzeugt am Signalausgang eine proportionale Ladung. Der nachzuschaltende Messverstärker (z.B. ICAM Typ 5073A...) wandelt diese in ein auswertbares Prozeßsignal um (z.B. 0 ... 10 V). Die besondere quadratische Bauform des Sensorkörpers und die beidseitige Krafteinleitung über axiale Gewindebohrungen bringen Vorteile bei speziellen Einbausituationen. Zugkräfte werden bis zu 10 % des Druckkraftbereichs gemessen. Kalibriert sind diese Bereiche nicht. Sie werden jedoch häufig für die Detektierung von Werkzeugabzugskräften z.B. nach Einpressvorgängen verwendet.

Typ 9313AA1, 9313AA2

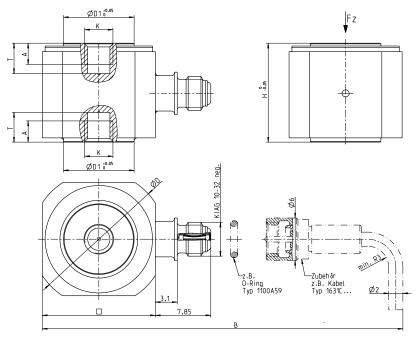
Anwendung

Die quadratische Geometrie des Sensors macht ihn besonders interessant bei engen Platzverhältnissen, zum Einbau in den kraftaufbringenden Stempel oder auch zur Reaktionskraftmessung unter Werkstückträgern. Wegen der besonderen Eigenschaft des piezoelektrischen Messelements - annähernd konstante Messgenauigkeit über einen weiten Kraftbereich – ist ein und derselbe Press Force Sensor für ein großes Kraftspektrum einsetzbar. Die Möglichkeit der Messbereichsumschaltung bei Verwendung geeigneter Verstärker (z.B. ICAM Typ 5073A...) unterstützt dieser Vorteil zusätzlich und trägt damit dem allgemeinen Trend nach mehr Teilevielfalt auf den Fertigungs- und Messstationen Rechnung. Aber auch bei Laboranwendungen, wo häufige Sensorwechsel an der Tagesordnung sind, bietet die Weitbereichsmesskette entscheidende Vorteile. Zudem macht die extrem hohe Überlastsicherheit bei Verwendung der jeweils unteren Messbereiche aufwändige Schutzmaßnahmen überflüssig.

Technische Daten

Press Force Sensor	Тур	9313AA1	9313AA2
Messbereich F _z , max.	kN	0 5	0 20
Messbereiche, kalibriert 1)			
100 %	kN	0 5	0 20
10 %	kN	0 0,5	0 2
1 %	kN	0 0,05	0 0,2
Überlast Zug/Druck, max.	kN	-0,5/5,5	-2/22
Ansprechschwelle	N	0,01	0,01
Empfindlichkeit	pC/N	-10	-10

Seite 1/4


measure. analyze. innovate.

Press Force Sensor	Тур	9313AA1	9313AA2	
Linearität, einschl. Hysterese 2)	% FSO	≤±0,5	≤±0,5	
Drehmoment Mz, max.	N⋅m	0,3	1,4	
Temperaturkoeffizient der Empfindlichkeit	%/°C	0,05	0,05	
Biegemoment M _{x,y} , max.				
bei F _z = 100 %	N∙m	0,2	0,6	
bei F _z = 0 %	N⋅m	1,3	6	
Schubkraft F _{x,y} , max. 3)	kN	0,1	0,27	
	N/N	<0,29	<0,65	
$M_{x,y} \rightarrow F_z$	N/N·m	<72	<98	
Steifigkeit cz	N/µm	≈560	≈1 500	
Eigenfrequenz	kHz	>38	>35	
Betriebstemperaturbereich	°C	-40 .	120	
Anschluß, elektrisch		KIAG 10	-32 neg.	
Schutzart nach EN60529				
mit angeschlossenem Kabel IP			65	
mit Kabel Typ 1983AD				
und angeschweißtem Sensor IP		67		
Gehäusewerkstoff	DIN	1.4542		
Gewicht (ohne Kabel)	Gramm	10	25	

¹⁾ Nur Druckrichtung kalibriert. Zugkraft wie unter "Überlast" angegeben messbar, jedoch nicht kalibriert

3) Entspricht Querkraft an der Trennfuge

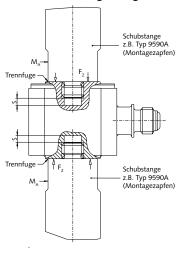
Dimensionen Typ 9313AA1, 9313AA2

Abmessungen [mm]

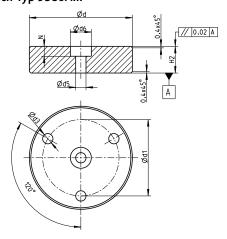
Тур	D	D1		Н	K	Т	Α	В
9313AA1	13	5	11	10	M2,5	2,8	2	35
9313AA2	19	10	16	14	M4	4,2	3	40

Seite 2/4

²⁾ Bezogen auf FSO des jeweils kalibrierten (!) Messbereichs

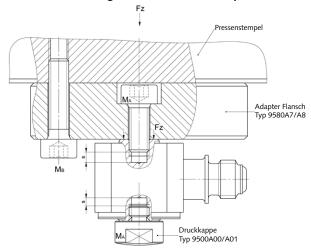

measure. analyze. innovate.

Allgemeine Montagehinweise

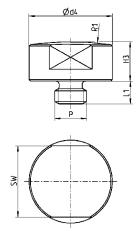

- Exzentrische Krafteinleitung ist zu vermeiden. Kraft möglichst konzentrisch einleiten.
- Biegemomente, Schubbelastung, Drehmomente It. Tabelle nicht überschreiten
- Kraftübertragende Trennflächen plan, schmutz- und fettfrei halten
- Einschraubbegrenzung ist die jeweilige Trennfläche und nicht das Gewindeende.

Mechanische Integration des Sensors (Beispiele)

A: Sensor in einer Schubstange integriert

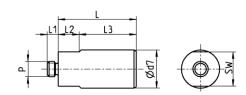


Flansch Typ 9580A...



zu Typ	Тур	d	d1	d3	d5	d6	H2	N
9313AA1	9580A7	27	20	2,7	2,7	5,5	7	2,6
9313AA2	9580A8	35	27	3,2	4,3	8	8	4,5

B: Sensor frontseitig an einem Pressenstempel



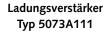
Druckkappe Typ 9500A...

zu Typ	Тур	d4	H3	L1	P	R1	SW
9313AA1	9500A00	6	3	1,9	M2,5	15	5
9313AA2	9500A01	10,5	5	2,9	M4	35	9

Montagezapfen Typ 9590A...

zu Typ	Тур	d7	L	L1	L2	L3	P	SW
9313AA1	9590A7	5	12,5	1,9	2,5	10	M2,5	4,5
9313AA2	9590A8	10	20,5	2,9	5,5	15	M4	9

Seite 3/4


Elektrischer Anschluß

Wir empfehlen ausschließlich die Verwendung von Kistler Anschlusskabeln. Damit sind Probleme bezüglich Isolationswider-

stand, Reibungselektrizität oder Kabelbruch von Anfang an ausgeschlossen.

Se	ensor
Typ 9	9313AA1/AA2

Zubehör (optional)	Typ/Mat. Nr.
• Flansch	9580A
• Druckkappe	9500A
 Montagezapfen 	9590A
 Reinigungs- und Isolierspray 250 ml 	1003
• Anschlusskabel, KIAG 10-32 pos. – BNC pos.	1631C
• Anschlusskabel, KIAG 10-32 pos. – TNC pos.	1633C
 Anschlusskabel, KIAG 10-32 pos. – 	1635C
KIAG 10-32 pos.	
 Anschlusskabel, KIAG 10-32 pos. – 	1900A23A11
KIAG 10-32 pos., hochflexibel	
 Anschlusskabel, KIAG 10-32 pos. – 	1900A23A12
BNC pos., hochflexibel	

Anschluss-, Verlängerungs- und Verbindungskabel siehe Datenblatt Kabel für Kraft-, Drehmoment- und Dehnungssensoren (Dok. Nr. 000-346).

Kabelbuchsen, Kupplungen und Zubehör siehe Datenblatt Koaxiale Kabelstecker (Dok. Nr. 000-347).

Bestellbezeichnung	Тур
Bestellbezeichnung	ly

Press Force Sensor 0 ... 5 kN
 Press Force Sensor 0 ... 20 kN
 9313AA1
 9313AA2