

2-Komponenten-Sensor Fz, Mz

Typ 9345B

-10 ... 10 kN und -25 ... 25 N·m

Der montagefreundliche, piezoelektrische 2-Komponenten-Sensor eignet sich für die Messung einer Zug-/Druckkraft F_z und eines um die Sensorachse wirkenden Drehmoments M_z . Das grosse Auflösungsvermögen ermöglicht das Messen von kleinsten dynamischen Änderungen grosser Kräfte und Momente an nicht rotierenden Wellen.

- Sehr kompakter, einbaufertiger Sensor
- Grosse Steifheit und hohe Eigenfrequenz
- Flexible Adaption über beidseitige Flansche mit Gewindebohrungen
- Zentriersitze für koaxialen Einbau und optimale Drehmomenteinleitung
- · Zentrische Bohrung für Wellendurchführung

Beschreibung

Druck- und schubempfindliche Quarzscheiben sind unter hoher Vorspannung zwischen einer Hohldehnschraube und einer als Sensorgehäuse ausgebildeten Mutter integriert. Durch die extrem hohe Steifigkeit der Sensorelemente werden die Komponenten F_z und M_z praktisch ohne Weg- bzw. Winkeländerung erfasst. Die Kraft- und Drehmoment proportionalen Ladungssignale werden von Elektroden abgegriffen und über ein abgeschirmtes Kabel zum Ladungsverstärker geführt. Dieser wandelt sie in proportionale Ausgangsspannungen um, die aufgezeichnet und ausgewertet werden können.

Flansche mit Gewindebohrungen auf der Ober- und Unterseite des Sensors erlauben eine einfache Montage z.B. an der Stirnseite einer Welle oder auf Adapter-Flansche. Beidseitige Zentriersitze ermöglichen einen sehr genauen koaxialen Einbau und eine zentrische Bohrung erlaubt die Durchführung von Wellen.

Der Sensor ist rostbeständig und gegen das Eindringen von Spritzwasser geschützt. Zusammen mit dem Anschlusskabel Typ 1698AD2 wird die Schutzart IP65 erreicht.

Es ist zu beachten, dass die Messbereiche durch kombinierte und exzentrisch wirkende Belastungen verkleinert werden können!

Typ 9345B

Anwendung

- Vorschubkraft- und Momentmessung beim Bohren, Gewindeschneiden usw.
- Überwachung von Schraubvorgängen und Prüfung von Schraubverbindungen
- Prüfen von Federn (Torsion)
- Messungen an kleinen Drucklagern, Rutschkupplungen usw.
- Messung von Anlaufmomenten, Gleichlaufschwankungen und Torsionsvibrationen an Kleinservo- und Schrittmotoren
- Prüfung von Drehschaltern und Schraubverschlüssen

Technische Daten

	Тур	9345B
Fz	kN	-10 10
Mz	N∙m	-25 25
Fz	kN	-12/12
Mz	N∙m	-30/30
Fz	kN	0 10
Mz	N∙m	0 25
		0 –25
Fz	kN	0 1
Mz	N∙m	0 2,5
		0 –2,5
Fz	pC/N	≈–3,7
Mz	pC/N·m	≈–190
	F _z M _z F _z M _z F _z M _z F _z M _z	Fz kN Mz N·m Fz kN Mz N·m Fz kN Mz N·m Fz kN Mz N·m Fz pC/N

measure. analyze. innovate.

		Тур	9345B	
Ansprechschwelle	Fz	N	<0,02	
	Mz	mN⋅m	<0,35	
Linearität	Fz	%FSO	≤±0,3	
alle Bereiche	Mz	%FSO	≤±0,3	
Hysterese	Fz	%FSO	≤0,5	
alle Bereiche	Mz	%FSO	≤0,5	
Biegemoment max.				
M_x , M_y		N∙m	14,3	
$(M_z = 25 \text{ N} \cdot \text{m}; F_z =$	= O)			
M_x , M_y		N⋅m		
$(M_z = 200 \text{ N} \cdot \text{m}, F_z)$	= 0)			
Schubkraft max.				
$F_{x,y}$		kN	0,1 ¹⁾	
$(M_z = 25 \text{ N} \cdot \text{m}; F_z =$	= O)			
Mz		kN		
$(M_z = 200 \text{ N} \cdot \text{m}; F_z)$	= 0)			
Übersprechen				
$M_z \to F_z$		N/N·m	≤±2	
$M_b \rightarrow F_z$		N/N·m	≤±0,5	
$F_{x,y} \rightarrow F_z$ (typisch)		N/N	≤±0,02	
$F_z \rightarrow M_z$		mN·m/N	≤±0,04	
$M_b \rightarrow M_z$		N·m/N·m	≤±0,02	
$F_{x,y} \rightarrow M_z$ (typisch)	mN·m/N	≤±0,3		
Steifheit				
$c_z (F_z)$		kN/μm	≈1,7	
cφ (M _z)		N·m/µrad	≈0,19	
Eigenfrequenz				
f _n (z)		kHz	>41	
$f_n (M_z)$		kHz	>32	
Betriebstemperaturbe	ereich	°C	-40 120	
Temperaturkoeffizien	t der			
Empfindlichkeit				
Fz		%/°C	-0,02	
Mz		%/°C	-0,01	
Kapazität				
C _{Fz}		pF	≈65	
C _{Mz}		pF	≈340	
Isolationswiderstand		Ω	>10 ¹³	
bei 23 °C				
Schutzart		EN60529	IP65	
(mit angeschlossenen	n Kabel)			
Anschluss			V3 neg.	
Gehäusewerkstoff		DIN	1.4542	
Gewicht		g	267	
Anzugsdrehmoment (empfohlen)	MA	N⋅m	4	

¹⁾ Kraftangriff in der Flanschebene

Abmessungen 2-Komponenten-Sensor Fz, Mz

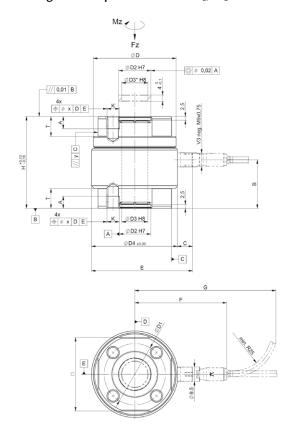


Bild 1: Abmessungen 2-Komponenten-Sensor $F_{z_{\text{r}}}$ $M_{z_{\text{r}}}$ Typ 9345B

Dimensionen in mm

Тур	D	D1	D2	D3	D3*	D4		Н	Α	
9345B	36	26	14	11	11	39	32	42	5	

Тур	В	C	E	F	G	K	Т	у	у
9345R	21.7	10	48 3	51	81	M5	9	0.15	0.35

^{*} Freier Durchgang mit montierten Zentrierringen

measure. analyze. innovate.

Montage

Die Montage erfolgt über die beidseitigen Flansche mit Gewindebohrungen. Die Kontaktflächen zum Sensor müssen plan, steif und sauber sein. Für einen möglichst genauen, koaxialen Einbau stehen Zentriersitze und Zentrierringe (mitgeliefertes Zubehör) zur Verfügung. Die Drehmomenteinleitung soll mit kleinstmöglicher Exzentrizität (<0,02 mm) der zu verbindenden Achsen erfolgen. Biegemomente und Schubkräfte sind möglichst zu vermeiden.

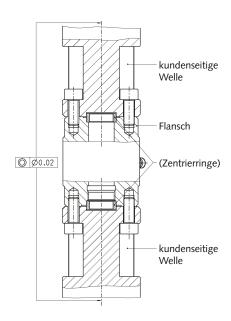


Bild 2: Einbau in Welle

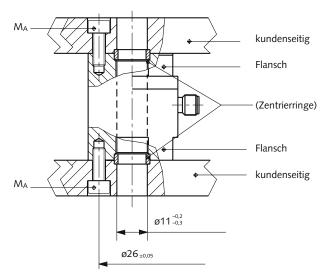
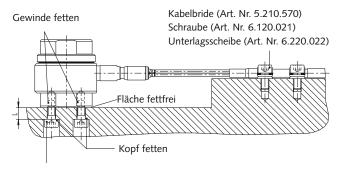



Bild 3: Einbau zwischen Grund- und Deckplatte

• Der Sensor wird mit vier Befestigungsschrauben auf eine zuvor maschinell bearbeitete Oberfläche geschraubt. Die Befestigungsfläche darf nicht lackiert oder gefettet sein und die Ebenheit der Kontaktfläche muss innerhalb einer Toleranz von 5 µm liegen.

- Das Verbindungskabel muss so installiert sein, dass möglichst keine tangentialen, radialen und axialen Kräfte am Sensor angreifen können. Das Kabel sollte so nahe wie möglich am Sensor auf einer geeigneten Montageoberfläche befestigt werden.
- Das Anzugsmoment für die vier Befestigungsschrauben beträgt je Schraube 21 [N·m].

Typ 9345B 4 Stk. Schraube M5x12 (Art. Nr. 6.120.022) Anzugsmoment: M_{ν} [N·m]

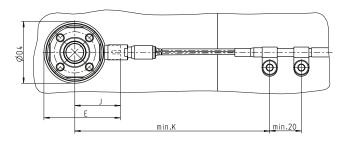


Bild 4: Einbau 2-Komponenten-Sensor F_z , M_z

Тур	D4	E	J	K	L	Μv
9345B	39	48,3	28,8	130	7,3	4

Messsystem mit 2-Komponenten-Kraftmesselement

2-Komponenten- Kraftmesselement mit V3 neg. Stecker	Schutzklasse EN60529	Anschlusskabel	Mehrkanal Ladungsverstärker	Messwert
Тур 9345В		Тур 1698АD2	Typ 5073A211	
V3 neg.	IP65	V3 pos. 2 x BNC pos.	Typ 5015A Typ 5015A	F _z M _z

Mitgeliefertes Zubehör	Art. Nr.
• 2 x Zentrierring für Typ 9345B	3.420.180
• 2x Kabelbride	5.210.570
• 2x Schraube	6.120.021
• 2x Unterlagsscheibe	6.220.022

Zubehör (optional)

Typ • Montageflansch für Typ 9345B 9580A1 • Anschlusskabel 2-adrig, 1698AD...

V3 pos. – 2 x BNC pos., L = 2 m oder SP· Anschlusskabel 2-adrig, 1698AP...

V3 pos. – 2 x KIAG 10-32 pos.,

L = 2 m oder SP

(siehe auch Datenblatt für Kabel 1687B_000-545)

Bestellbezeichnung

Тур 9345B

• 2-Komponenten-Sensor Fz, Mz -10 ... 10 kN, -25 ... 25 N·m