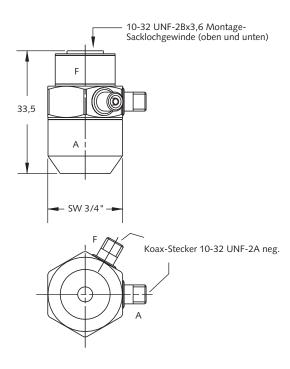


Keramik-/Quarz-Impedanzkopf

Тур 8770А...

für die Modalanalyse

Die Sensoren vom Typ 8770A...messen an einem Punkt des zu untersuchenden Gegenstandes gleichzeitig dynamische Kraft und Beschleunigung, um die mechanische Impedanz zu bestimmen.


- Spannungsausgang
- Empfindlichkeit unbeeinflusst vom Anzugsdrehmoment
- Kraft und Beschleunigung innerhalb 2 Grad phasengleich
- Hält dem Schock-Grenzwert 1 ms lang stand
- CE-konform

Beschreibung

Die Eigenschaften dieses Sensors sind durch die einzigartige Konstruktion seines Sensorelements optimiert. Das Ergebnis ist eine Vorrichtung, die gleichzeitig dynamische Beschleunigungsund Kraftmessungen von exakt derselben Stelle an einem zu untersuchenden Gegenstand liefert. Durch interne Kristallisolierung und Phasengleichheit der Ausgangssignale können die Messdaten am Anregungspunkt mit optimaler räumlicher und zeitlicher Übereinstimmung erfasst werden. In der Modalanalyse haben Messdaten am Anregungspunkt eine vorrangige Bedeutung, da jeder Messfehler direkte Auswirkungen auf die skalierten Eigenschwingungsformen haben. Die erforderliche Impedanzübertragungsfunktion kann nun einfach und genau von den Messungen dieses einzigartigen Impedanzkopfsensors abgeleitet werden.

Typ 8770A... ist so konstruiert, dass seine Basisdehnungsempfindlichkeit vernachlässigbar ist, sodass Messungen an extrem nachgiebigen Strukturen möglich sind. Weder die Beschleunigungs- noch die Kraftempfindlichkeit werden vom Anzugsdrehmoment oder von der Massezuladung beeinflusst. Durch die hohe Empfindlichkeit, das geringe Rauschen und die hohe Steifigkeit werden auch bei geringem Krafteingang genaue Ergebnisse erreicht. In vielen Situationen ist dies ideal, da zusätzliche Spannungen minimiert und Materialermüdungen aufgrund der Prüfung ignoriert werden können.

Jedes der beiden Sensorelemente des Impedanzkopfs ist intern an einen Piezotron-Mikroelektronikschaltkreis angeschlossen, der das Ladungssignal der piezoelektrischen Elemente in ein nutzbares hohes Spannungssignal am Ausgang umwandelt.

Anwendung

Der häufigste Anwendungsbereich des Impedanzkopfes ist das Erfassen von Messdaten am Anregungspunkt in der Modalanalyse.

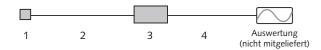
Piezotron ist ein eingetragenes Warenzeichen der Kistler Gruppe

Technische Daten

	Einheit	Typ 8770A5	Тур 8770А50
BESCHLEUNIGUNG			
Bereich	g	±5	±50
Frequenzgang, ±5 %	Hz	1 4 000	1 4 000
Empfindlichkeit, ±10 %	mV/g	1 000	100
Ansprechschwelle, nom.	grms	0,0004	0,001
Resonanzfrequenz montiert, nom.	kHz	16	16
Seitenempfindlichkeit, max. 5 %	%	1,5	1,5
Basisdehnungsempfindlichkeit bei 250 με	g/με	0,0005	0,0005
Temperatur-Koeffizient der Empfindlichkeit	%/°C	0,14	0,14
KDAFT			
KRAFT	N	. 22	. 222
Messbereich	N	±22	±222
maximaler Kraftbereich	N	1 112	1 112
Empfindlichkeit, ±10 %	mV/N	227	23
Resonanzfrequenz	kHz	36	36
Ansprechschwelle, nom.	N or roc	0,0006	0,006
Temperatur-Koeffizient der Empfindlichkeit	%/°C	0,05	0,05
ELEKTRONIK			
Ausgang			
Ruhespannung, nom.	VDC	11	11
Widerstand, Beschleunigung	Ω	≤500	≤500
Widerstand, Kraft	Ω	≤100	≤100
Strom	mA	2	2
Spannung FS, nom.	V	±5	±5
Zeitkonstante bei Raumtemperatur	S	≥0,5	≥0,5
Speisung (durch Kuppler)			
Strom	mA	2 18	2 18
Spannung	VDC	20 30	20 30
UMGEBUNGSEINFLÜSSE	T	T	T
Maximal zulässige Beschleunigung	g	±500	±500
Shock (1 ms Puls), max.	g	2 500	2 500
Betriebstemperaturbereich	°C	-55 80	-55 120
Linearitätsfehler	%	±1	±1
Phasengleichheit (Kraft und Beschleunigung, 5 4 000 Hz)	0	2	2
Steifigkeit	kN/μm	0,9	0,9
ALLGEMEINE BAULICHE ANGABEN			
Gewicht	Gramm	34	34
Gehäuse/Basis	Material	Titan	Titan
Schutzart Gehäuse/Stecker (EN 60529)		IP68	IP68
Anzugsdrehmoment	N⋅m	2	2
Messelement (Beschleunigung/Kraft)	Тур	Quarz/Keramik	Quarz/Keramik
	1 71	1	

¹ g = 9,80665 m/s², 1 Inch = 25,4 mm, 1 Gramm = 0,03527 oz, 1 lbf-in = 0,113 N·m

Montage


Zum Erreichen genauer und zuverlässiger Messungen muss die Montagefläche sauber und eben sein. Der Impedanzkopf kann über 10-32 Montagegewindebohrungen an der Ober- und Unterseite an den elektromagnetischen Schwingerreger oder den zu untersuchenden Gegenstand angeschlossen werden. Normalerweise wird der Schwingerreger mittels einer Stosstange mit dem Impedanzkopf bzw. der Impedanzkopf mit dem zu prüfenden Gegenstand verbunden.

Mitgeliefertes Zubehör	Тур
 2 Montagebolzen 10-32 auf 10-32 	8402
 2 Montagebolzen 10-32 auf M6 	8411

Bestellschlüssel

	Тур	Тур 8770А 🗌	
Bereich		^	
±5 g	5		
±50 g	50		

M	esskette	Тур
1	Sensor mit Spannungsausgang	8770A
2	Anschlusskabel, 10-32 pos. auf BNC pos.	1761B
3	Kuppler	51
4	Verbindungskabel, BNC pos. auf BNC pos.	1511

