

SlimLine Sensor (SLS)

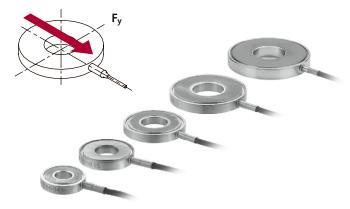
Type 9143B... up to 9147B...

Measurement of Dynamic and Quasistatic Shear Forces $-0.9 \dots 0.9 \text{ kN}$ up to $0 \dots \pm 8 \text{ kN}$

Quartz sensor with extremely flat design for measuring dynamic and quasistatic shear forces in one direction. Maximum resolution, high rigidity, extremely small dimensions. Ideal for installation in structures. Welded construction with integrated connecting cable sealed in the case and with a selection of plug connectors.

SlimLine sensors are supplied **uncalibrated** and must be calibrated in situ **after** installation.

- Extremely small size with up to 8 kN measuring range (shear force)
- Flexible mounting in structures
- Sealed case (IP65)
- Integral non-detachable cable with Fluoropolymer sheath


The sensor contains two quartz elements sensitive to shear force in one direction. The force to be measured is transmitted by stiction to the quartz elements and these produce an electrical charge directly proportional to the force applied.

The cable connection to the sensor case is tightly sealed to

The cable connection to the sensor case is tightly sealed to provide degree of protection IP65.

Application

The sensor is used in industrial manufacturing processes requiring measurement and partial monitoring of shear forces. In conjunction with a ControlMonitor this sensor is ideal for quality control and monitoring of large-scale industrial production. Its particularly slim profile makes it perfect for mounting in structures such as force plates, tools and machine frames. Where very large shear forces have to be measured, or positioning directly in the force flux is not possible, the sensor

is shunt mounted. It then measures only part of the process force and the rest is shunted. This means a smaller measuring range than with direct shear force measurement can normally be used to provide a more cost-effective solution. Another advantage is the high overload protection provided by force shunt measurement.

Examples of Applications

- Monitoring of shear forces in machinery, tools and assembly processes.
- Construction of platforms and dynamometers with small dimensions.

Technical Data

Linearity incl. hysteresis (pretensioned)	%FSO	≤±1
Threshold	N	<0.01
Operating temperature range	°C	–20 120
Insulation resistance	Ω	≥10 ¹³
Degree of protection ¹⁾	EN60529	IP65

Other Technical Data

Basic Type	Range	Overload	Sensitivity	Rigidity	Pretensioning	External	Internal	Height	Weight
	Fy	Fy		(axial)	force (axial) ²⁾	diameter	diameter		
	[kN]	[kN]	[pC/N]	[kN/µm]	[kN]	D [mm]	d [mm]	H [mm]	m [g]
9143B	0 ±0.9	1.1	-6.5	≈2.5	9.0	16.0	6.1	3.5	3.0
9144B	0 ±1.7	2.0	-7.5	≈5.6	17.0	20.0	8.1	3.5	5.0
9145B	0 ±2.7	3.3	-7.5	≈7.0	27.0	24.0	10.1	3.5	7.0
9146B	0 ±4.0	4.7	-7.5	≈8.0	40.0	30.0	12.1	4.0	14.0
9147B	0 ±8.0	10.0	-8.1	≈16.0	80.0	36.0	14.1	5.0	27.0

¹⁾ The degree of protection according EN60529 is determined by water, oil, emulsions, cooling lubricant etc. have mostly a better wetting and penetration ability. The degree of protection in contact with such liquid is classified accordingly lower.

Page 1/5

²⁾ Cannot be measured by the sensor

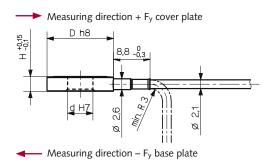


Fig. 1: Dimensions SlimLine Sensor

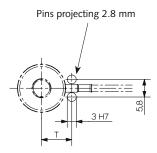
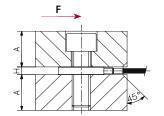


Fig. 2: Two pins prevent the sensor from turning

Information for Installation

for SL Sensor Type		9143B	9144B	9145B	9146B	9147B
Thread M		M6	M8	M10	M12	M14
Bore d1	mm	6.4	8.4	10.5	13	15
Plate thickness A	mm	12	16	20	24	27
Distance T	mm	13	15	17	20	23
Max. tightening	N⋅m	10	23	46	79	135
torque for preloading						


Installation

A shear force sensor must always be fitted under preload, since the shear forces are transmitted by stiction. The contact surfaces with the sensor must be absolutely free of grease, finish machined and rigid. The adjacent table contains the most important information concerning preloading. Note: The stated tightening torque applies only to the screw thread M mentioned (lightly greased).

Markings on the sensor case facilitate its alignment. Two pins can be used to prevent the sensor from turning during its installation (Fig. 3).

Basic Type Fitted with Set Screw

Basic Type	Measuring Range F _y	Preloading Force F _v	Tightening Torque
	[kN]	[kN]	[N·m]
9143B	0.9	9.0	10.0
9144B	1.7	17.0	23.0
9145B	2.7	27.0	46.0
9146B	4.0	40.0	79.0
9147B	8.0	80.0	135.0

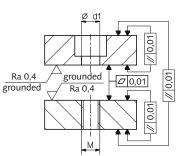


Fig. 3: Mounting dimensions with direct force measurement

Reducation in Measuring Range with Additional Bending Moment for SlimLine Sensors (SLS)

Basic Type	max. Bending Moment $M_{b,zul}$ 1) ($F_z = 0$)	Reduction of measuring range F _y when allowable bending moment [kN/N·m]		
	[N·m]	exceeded		
9143B	10.2	0.0456		
9144B	24.0	0.0369		
9145B	30.5	0.0290		
9146B	96.5	0.0231		
9147B	100.0	0.0201		

The allowable bending moment $M_{b,zul}$ must not be exceeded. If this is unavoidable in the particular application, the measuring range F_y must be simultaneously reduced as shown in the following example.

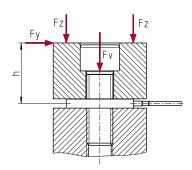


Fig. 4: Bending moment $M_b = F_y \cdot h$

Example

A bending moment M_b of 35 N·m acts on a sensor Type 9144B.... What is the magnitude of the maximum measuring range F_y?

The acting bending moment M_b is 35 N·m – 24 N·m = 11 N·m greater than the allowable value. This reduces the measuring range F_v from 1.70 kN by 11 N·m x 0.0369 kN/N·m = 0.41 kN to 1.29 kN.

Calibration

The preloading bolt needed for fitting the sensor forms a force shunt, i.e. the sensor measures only about 90 % of the entire force. Accordingly, the exact sensitivity of a sensor can only be determined after preloading.

The SlimLine sensor is therefore delivered uncalibrated. Its sensitivity can be determined by calibration only after it has been fitted.

Installation Examples in Shear Force Plates

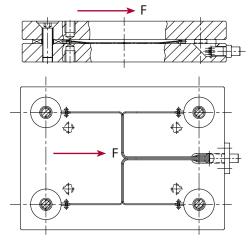
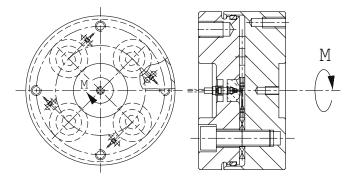
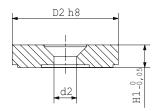


Fig. 5: Single-component dynamometer. Measurement of shear forces F_y. Note: two sensors must be fitted so that they are arranged around the connector axis.

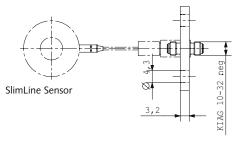


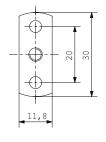

Fig. 6: Torque dynamometer. The resultant torque M can be calculated by measuring the shear forces F_y .

measure. analyze. innovate.

Accessories

Preloading Disk





One countersunk screw is supplied with each preloading disk

Туре	For SLS Sensor Type	Thread Size	External Diameter	Internal Diameter	Disk Thickness	Screw Length
			D2	d2	H1	L
9410A3	9143B	M3	16.0	3.2	4.25	10.0
9410A4	9144B	M4	20.0	4.3	4.25	10.0
9410A5	9145B	M5	24.0	5.3	4.25	10.0
9410A6	9146B	M6	30.0	6.4	5.5	14.0
9410A7	9147B	M8	36.0	8.4	7.0	16.0

Cable/Connector

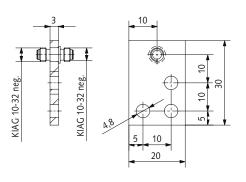


Fig. 7: Coupling Type 1729A1 with steel support; connector KIAG 10-32 neg. on both sides

Fig. 8: Coupling Type 1729A2 with plastic support; connector KIAG 10-32 neg. on both sides

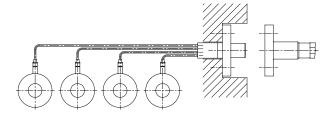
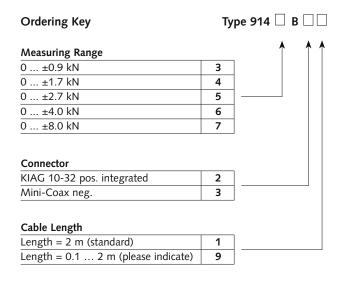
Insulating Foils

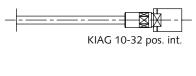
Insulating foils are available for ground-insulated installation. The friction between sensor and base or cover plate is not reduced by this foil, but increased.

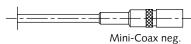
For Sensor	Туре	9143B	9144B	9145B	9146B	9147B
Insulating foil	Art. No.	3.221.284	3.221.285	3.221.286	3.221.287	3.221.487
Ext. ø	mm	16	20	24	30	36
Int. ø	mm	6.1	8.1	10.1	12.1	14.1
Thickness	mm	0.125	0.125	0.125	0.125	0.125

SLS Assembly

2, 3 or 4 SlimLine sensors are incorporated in a sealed (IP65) plug connection with an individually selected cable length. Either individual signals or the summation signal (all sensors connected in parallel) appear at the output. See data sheet 9130B_000-766.


Fig. 9: SLS Assembly


Page 4/5

The following connections can be used:

